157 lines
3.3 KiB
Markdown
157 lines
3.3 KiB
Markdown
|
## 题目地址
|
|||
|
|
|||
|
https://leetcode.com/problems/binary-tree-preorder-traversal/description/
|
|||
|
|
|||
|
## 题目描述
|
|||
|
|
|||
|
```
|
|||
|
Given a binary tree, return the preorder traversal of its nodes' values.
|
|||
|
|
|||
|
Example:
|
|||
|
|
|||
|
Input: [1,null,2,3]
|
|||
|
1
|
|||
|
\
|
|||
|
2
|
|||
|
/
|
|||
|
3
|
|||
|
|
|||
|
Output: [1,2,3]
|
|||
|
Follow up: Recursive solution is trivial, could you do it iteratively?
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 思路
|
|||
|
|
|||
|
这道题目是前序遍历,这个和之前的`leetcode 94 号问题 - 中序遍历`完全不一回事。
|
|||
|
|
|||
|
前序遍历是`根左右`的顺序,注意是`根`开始,那么就很简单。直接先将根节点入栈,然后
|
|||
|
看有没有右节点,有则入栈,再看有没有左节点,有则入栈。 然后出栈一个元素,重复即可。
|
|||
|
|
|||
|
> 其他树的非递归遍历课没这么简单
|
|||
|
|
|||
|
## 关键点解析
|
|||
|
|
|||
|
- 二叉树的基本操作(遍历)
|
|||
|
> 不同的遍历算法差异还是蛮大的
|
|||
|
- 如果非递归的话利用栈来简化操作
|
|||
|
|
|||
|
- 如果数据规模不大的话,建议使用递归
|
|||
|
|
|||
|
- 递归的问题需要注意两点,一个是终止条件,一个如何缩小规模
|
|||
|
|
|||
|
1. 终止条件,自然是当前这个元素是 null(链表也是一样)
|
|||
|
|
|||
|
2. 由于二叉树本身就是一个递归结构, 每次处理一个子树其实就是缩小了规模,
|
|||
|
难点在于如何合并结果,这里的合并结果其实就是`mid.concat(left).concat(right)`,
|
|||
|
mid 是一个具体的节点,left 和 right`递归求出即可`
|
|||
|
|
|||
|
## 代码
|
|||
|
|
|||
|
- 语言支持:JS,C++
|
|||
|
|
|||
|
JavaScript Code:
|
|||
|
|
|||
|
```js
|
|||
|
/*
|
|||
|
* @lc app=leetcode id=144 lang=javascript
|
|||
|
*
|
|||
|
* [144] Binary Tree Preorder Traversal
|
|||
|
*
|
|||
|
* https://leetcode.com/problems/binary-tree-preorder-traversal/description/
|
|||
|
*
|
|||
|
* algorithms
|
|||
|
* Medium (50.36%)
|
|||
|
* Total Accepted: 314K
|
|||
|
* Total Submissions: 621.2K
|
|||
|
* Testcase Example: '[1,null,2,3]'
|
|||
|
*
|
|||
|
* Given a binary tree, return the preorder traversal of its nodes' values.
|
|||
|
*
|
|||
|
* Example:
|
|||
|
*
|
|||
|
*
|
|||
|
* Input: [1,null,2,3]
|
|||
|
* 1
|
|||
|
* \
|
|||
|
* 2
|
|||
|
* /
|
|||
|
* 3
|
|||
|
*
|
|||
|
* Output: [1,2,3]
|
|||
|
*
|
|||
|
*
|
|||
|
* Follow up: Recursive solution is trivial, could you do it iteratively?
|
|||
|
*
|
|||
|
*/
|
|||
|
/**
|
|||
|
* Definition for a binary tree node.
|
|||
|
* function TreeNode(val) {
|
|||
|
* this.val = val;
|
|||
|
* this.left = this.right = null;
|
|||
|
* }
|
|||
|
*/
|
|||
|
/**
|
|||
|
* @param {TreeNode} root
|
|||
|
* @return {number[]}
|
|||
|
*/
|
|||
|
var preorderTraversal = function(root) {
|
|||
|
// 1. Recursive solution
|
|||
|
|
|||
|
// if (!root) return [];
|
|||
|
|
|||
|
// return [root.val].concat(preorderTraversal(root.left)).concat(preorderTraversal(root.right));
|
|||
|
|
|||
|
// 2. iterative solutuon
|
|||
|
|
|||
|
if (!root) return [];
|
|||
|
const ret = [];
|
|||
|
const stack = [root];
|
|||
|
let t = stack.pop();
|
|||
|
|
|||
|
while (t) {
|
|||
|
ret.push(t.val);
|
|||
|
if (t.right) {
|
|||
|
stack.push(t.right);
|
|||
|
}
|
|||
|
if (t.left) {
|
|||
|
stack.push(t.left);
|
|||
|
}
|
|||
|
t = stack.pop();
|
|||
|
}
|
|||
|
|
|||
|
return ret;
|
|||
|
};
|
|||
|
```
|
|||
|
|
|||
|
C++ Code:
|
|||
|
|
|||
|
```C++
|
|||
|
/**
|
|||
|
* Definition for a binary tree node.
|
|||
|
* struct TreeNode {
|
|||
|
* int val;
|
|||
|
* TreeNode *left;
|
|||
|
* TreeNode *right;
|
|||
|
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
|
|||
|
* };
|
|||
|
*/
|
|||
|
class Solution {
|
|||
|
public:
|
|||
|
vector<int> preorderTraversal(TreeNode* root) {
|
|||
|
vector<int> v;
|
|||
|
vector<TreeNode*> s;
|
|||
|
while (root != NULL || !s.empty()) {
|
|||
|
while (root != NULL) {
|
|||
|
v.push_back(root->val);
|
|||
|
s.push_back(root);
|
|||
|
root = root->left;
|
|||
|
}
|
|||
|
root = s.back()->right;
|
|||
|
s.pop_back();
|
|||
|
}
|
|||
|
return v;
|
|||
|
}
|
|||
|
};
|
|||
|
```
|