183 lines
5.1 KiB
Markdown
183 lines
5.1 KiB
Markdown
|
## 题目地址
|
|||
|
https://leetcode.com/problems/combination-sum-ii/description/
|
|||
|
|
|||
|
## 题目描述
|
|||
|
```
|
|||
|
Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
|
|||
|
|
|||
|
Each number in candidates may only be used once in the combination.
|
|||
|
|
|||
|
Note:
|
|||
|
|
|||
|
All numbers (including target) will be positive integers.
|
|||
|
The solution set must not contain duplicate combinations.
|
|||
|
Example 1:
|
|||
|
|
|||
|
Input: candidates = [10,1,2,7,6,1,5], target = 8,
|
|||
|
A solution set is:
|
|||
|
[
|
|||
|
[1, 7],
|
|||
|
[1, 2, 5],
|
|||
|
[2, 6],
|
|||
|
[1, 1, 6]
|
|||
|
]
|
|||
|
Example 2:
|
|||
|
|
|||
|
Input: candidates = [2,5,2,1,2], target = 5,
|
|||
|
A solution set is:
|
|||
|
[
|
|||
|
[1,2,2],
|
|||
|
[5]
|
|||
|
]
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 思路
|
|||
|
|
|||
|
这道题目是求集合,并不是`求极值`,因此动态规划不是特别切合,因此我们需要考虑别的方法。
|
|||
|
|
|||
|
这种题目其实有一个通用的解法,就是回溯法。
|
|||
|
网上也有大神给出了这种回溯法解题的
|
|||
|
[通用写法](https://leetcode.com/problems/combination-sum/discuss/16502/A-general-approach-to-backtracking-questions-in-Java-(Subsets-Permutations-Combination-Sum-Palindrome-Partitioning)),这里的所有的解法使用通用方法解答。
|
|||
|
除了这道题目还有很多其他题目可以用这种通用解法,具体的题目见后方相关题目部分。
|
|||
|
|
|||
|
我们先来看下通用解法的解题思路,我画了一张图:
|
|||
|
|
|||
|
![backtrack](../assets/problems/backtrack.png)
|
|||
|
|
|||
|
通用写法的具体代码见下方代码区。
|
|||
|
|
|||
|
## 关键点解析
|
|||
|
|
|||
|
- 回溯法
|
|||
|
- backtrack 解题公式
|
|||
|
|
|||
|
|
|||
|
## 代码
|
|||
|
|
|||
|
* 语言支持: Javascript,Python3
|
|||
|
|
|||
|
```js
|
|||
|
/*
|
|||
|
* @lc app=leetcode id=40 lang=javascript
|
|||
|
*
|
|||
|
* [40] Combination Sum II
|
|||
|
*
|
|||
|
* https://leetcode.com/problems/combination-sum-ii/description/
|
|||
|
*
|
|||
|
* algorithms
|
|||
|
* Medium (40.31%)
|
|||
|
* Total Accepted: 212.8K
|
|||
|
* Total Submissions: 519K
|
|||
|
* Testcase Example: '[10,1,2,7,6,1,5]\n8'
|
|||
|
*
|
|||
|
* Given a collection of candidate numbers (candidates) and a target number
|
|||
|
* (target), find all unique combinations in candidates where the candidate
|
|||
|
* numbers sums to target.
|
|||
|
*
|
|||
|
* Each number in candidates may only be used once in the combination.
|
|||
|
*
|
|||
|
* Note:
|
|||
|
*
|
|||
|
*
|
|||
|
* All numbers (including target) will be positive integers.
|
|||
|
* The solution set must not contain duplicate combinations.
|
|||
|
*
|
|||
|
*
|
|||
|
* Example 1:
|
|||
|
*
|
|||
|
*
|
|||
|
* Input: candidates = [10,1,2,7,6,1,5], target = 8,
|
|||
|
* A solution set is:
|
|||
|
* [
|
|||
|
* [1, 7],
|
|||
|
* [1, 2, 5],
|
|||
|
* [2, 6],
|
|||
|
* [1, 1, 6]
|
|||
|
* ]
|
|||
|
*
|
|||
|
*
|
|||
|
* Example 2:
|
|||
|
*
|
|||
|
*
|
|||
|
* Input: candidates = [2,5,2,1,2], target = 5,
|
|||
|
* A solution set is:
|
|||
|
* [
|
|||
|
* [1,2,2],
|
|||
|
* [5]
|
|||
|
* ]
|
|||
|
*
|
|||
|
*
|
|||
|
*/
|
|||
|
function backtrack(list, tempList, nums, remain, start) {
|
|||
|
if (remain < 0) return;
|
|||
|
else if (remain === 0) return list.push([...tempList]);
|
|||
|
for (let i = start; i < nums.length; i++) {
|
|||
|
// 和39.combination-sum 的其中一个区别就是这道题candidates可能有重复
|
|||
|
// 代码表示就是下面这一行
|
|||
|
if(i > start && nums[i] == nums[i-1]) continue; // skip duplicates
|
|||
|
tempList.push(nums[i]);
|
|||
|
backtrack(list, tempList, nums, remain - nums[i], i + 1); // i + 1代表不可以重复利用, i 代表数字可以重复使用
|
|||
|
tempList.pop();
|
|||
|
}
|
|||
|
}
|
|||
|
/**
|
|||
|
* @param {number[]} candidates
|
|||
|
* @param {number} target
|
|||
|
* @return {number[][]}
|
|||
|
*/
|
|||
|
var combinationSum2 = function(candidates, target) {
|
|||
|
const list = [];
|
|||
|
backtrack(list, [], candidates.sort((a, b) => a - b), target, 0);
|
|||
|
return list;
|
|||
|
};
|
|||
|
```
|
|||
|
Python3 Code:
|
|||
|
```python
|
|||
|
class Solution:
|
|||
|
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
|
|||
|
"""
|
|||
|
与39题的区别是不能重用元素,而元素可能有重复;
|
|||
|
不能重用好解决,回溯的index往下一个就行;
|
|||
|
元素可能有重复,就让结果的去重麻烦一些;
|
|||
|
"""
|
|||
|
size = len(candidates)
|
|||
|
if size == 0:
|
|||
|
return []
|
|||
|
|
|||
|
# 还是先排序,主要是方便去重
|
|||
|
candidates.sort()
|
|||
|
|
|||
|
path = []
|
|||
|
res = []
|
|||
|
self._find_path(candidates, path, res, target, 0, size)
|
|||
|
|
|||
|
return res
|
|||
|
|
|||
|
def _find_path(self, candidates, path, res, target, begin, size):
|
|||
|
if target == 0:
|
|||
|
res.append(path.copy())
|
|||
|
else:
|
|||
|
for i in range(begin, size):
|
|||
|
left_num = target - candidates[i]
|
|||
|
if left_num < 0:
|
|||
|
break
|
|||
|
# 如果存在重复的元素,前一个元素已经遍历了后一个元素与之后元素组合的所有可能
|
|||
|
if i > begin and candidates[i] == candidates[i-1]:
|
|||
|
continue
|
|||
|
path.append(candidates[i])
|
|||
|
# 开始的 index 往后移了一格
|
|||
|
self._find_path(candidates, path, res, left_num, i+1, size)
|
|||
|
path.pop()
|
|||
|
```
|
|||
|
|
|||
|
## 相关题目
|
|||
|
|
|||
|
- [39.combination-sum](./39.combination-sum.md)
|
|||
|
- [46.permutations](./46.permutations.md)
|
|||
|
- [47.permutations-ii](./47.permutations-ii.md)
|
|||
|
- [78.subsets](./78.subsets.md)
|
|||
|
- [90.subsets-ii](./90.subsets-ii.md)
|
|||
|
- [113.path-sum-ii](./113.path-sum-ii.md)
|
|||
|
- [131.palindrome-partitioning](./131.palindrome-partitioning.md)
|