121 lines
3.6 KiB
Markdown
121 lines
3.6 KiB
Markdown
|
## 题目地址(493. 翻转对)
|
|||
|
|
|||
|
https://leetcode-cn.com/problems/reverse-pairs/description/
|
|||
|
|
|||
|
## 题目描述
|
|||
|
|
|||
|
```
|
|||
|
给定一个数组 nums ,如果 i < j 且 nums[i] > 2*nums[j] 我们就将 (i, j) 称作一个重要翻转对。
|
|||
|
|
|||
|
你需要返回给定数组中的重要翻转对的数量。
|
|||
|
|
|||
|
示例 1:
|
|||
|
|
|||
|
输入: [1,3,2,3,1]
|
|||
|
输出: 2
|
|||
|
示例 2:
|
|||
|
|
|||
|
输入: [2,4,3,5,1]
|
|||
|
输出: 3
|
|||
|
注意:
|
|||
|
|
|||
|
给定数组的长度不会超过50000。
|
|||
|
输入数组中的所有数字都在32位整数的表示范围内。
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 暴力法
|
|||
|
|
|||
|
### 思路
|
|||
|
|
|||
|
读完这道题你应该就能联想到逆序数才行。求解逆序数最简单的做法是使用双层循环暴力求解。我们仿照求解决逆序数的解法来解这道题(其实唯一的区别就是系数从 1 变成了 2)。
|
|||
|
|
|||
|
### 代码
|
|||
|
|
|||
|
代码支持:Python3
|
|||
|
|
|||
|
Python3 Code:
|
|||
|
|
|||
|
```python
|
|||
|
class Solution(object):
|
|||
|
def reversePairs(self, nums):
|
|||
|
n = len(nums)
|
|||
|
cnt = 0
|
|||
|
for i in range(n):
|
|||
|
for j in range(i + 1, n):
|
|||
|
if nums[i] > 2 * nums[j]:
|
|||
|
cnt += 1
|
|||
|
return cnt
|
|||
|
```
|
|||
|
|
|||
|
## 分治法
|
|||
|
|
|||
|
### 思路
|
|||
|
|
|||
|
如果你能够想到逆序数,那么你很可能直到使用类似归并排序的方法可以求解逆序数。实际上逆序数只是归并排序的副产物而已。
|
|||
|
|
|||
|
我们在正常的归并排序的代码中去计算逆序数即可。由于每次分治的过程,左右两段数组分别是有序的,因此我们可以减少一些运算。 从时间复杂度的角度上讲,我们从$O(N^2)$优化到了 $O(NlogN)$。
|
|||
|
|
|||
|
具体来说,对两段有序的数组,有序数组内部是不需要计算逆序数的。 我们计算逆序数的逻辑只是计算两个数组之间的逆序数,我们假设两个数组是 A 和 B,并且 A 数组最大的元素不大于 B 数组最小的元素。而要做到这样,我们只需要常规的归并排序即可。
|
|||
|
|
|||
|
接下来问题转化为求解两个有序数组之间的逆序数,并且两个有序数组之间满足关系`A数组最大的元素不大于B数组最小的元素`。
|
|||
|
|
|||
|
关于计算逆序数的核心代码(Python3):
|
|||
|
|
|||
|
```python
|
|||
|
l = r = 0
|
|||
|
while l < len(left) and r < len(right):
|
|||
|
if left[l] <= 2 * right[r]:
|
|||
|
l += 1
|
|||
|
else:
|
|||
|
self.cnt += len(left) - l
|
|||
|
r += 1
|
|||
|
```
|
|||
|
|
|||
|
### 代码
|
|||
|
|
|||
|
代码支持:Python3
|
|||
|
|
|||
|
Python3 Code:
|
|||
|
|
|||
|
```python
|
|||
|
class Solution(object):
|
|||
|
def reversePairs(self, nums):
|
|||
|
self.cnt = 0
|
|||
|
|
|||
|
def mergeSort(lst):
|
|||
|
L = len(lst)
|
|||
|
if L <= 1:
|
|||
|
return lst
|
|||
|
return mergeTwo(mergeSort(lst[:L//2]), mergeSort(lst[L//2:]))
|
|||
|
|
|||
|
def mergeTwo(left, right):
|
|||
|
l = r = 0
|
|||
|
while l < len(left) and r < len(right):
|
|||
|
if left[l] <= 2 * right[r]:
|
|||
|
l += 1
|
|||
|
else:
|
|||
|
self.cnt += len(left) - l
|
|||
|
r += 1
|
|||
|
return sorted(left+right)
|
|||
|
|
|||
|
mergeSort(nums)
|
|||
|
return self.cnt
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
对于具体的排序过程我们偷懒直接使用了语言内置的方法 sorted,这在很多时候是有用的,即使你是参加面试,这种方式通常也是允许的。省略非核心的考点,可以使得问题更加聚焦,这是一种解决问题的思路,在工作中也很有用。
|
|||
|
|
|||
|
## 关键点解析
|
|||
|
|
|||
|
- 归并排序
|
|||
|
- 逆序数
|
|||
|
- 分治
|
|||
|
- 识别考点,其他非重点可以使用语言内置方法
|
|||
|
|
|||
|
## 代码
|
|||
|
|
|||
|
## 扩展
|
|||
|
|
|||
|
这道题还有很多别的解法,感性的可以参考下这个题解 [General principles behind problems similar to "Reverse Pairs"](https://leetcode.com/problems/reverse-pairs/discuss/97268/General-principles-behind-problems-similar-to-%22Reverse-Pairs%22)
|