leecode/problems/78.subsets.md

143 lines
3.1 KiB
Markdown
Raw Permalink Normal View History

2020-05-22 18:17:19 +08:00
## 题目地址
https://leetcode.com/problems/subsets/description/
## 题目描述
```
Given a set of distinct integers, nums, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: nums = [1,2,3]
Output:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
```
## 思路
这道题目是求集合,并不是`求极值`,因此动态规划不是特别切合,因此我们需要考虑别的方法。
这种题目其实有一个通用的解法,就是回溯法。
网上也有大神给出了这种回溯法解题的
[通用写法](https://leetcode.com/problems/combination-sum/discuss/16502/A-general-approach-to-backtracking-questions-in-Java-(Subsets-Permutations-Combination-Sum-Palindrome-Partitioning)),这里的所有的解法使用通用方法解答。
除了这道题目还有很多其他题目可以用这种通用解法,具体的题目见后方相关题目部分。
我们先来看下通用解法的解题思路,我画了一张图:
![backtrack](../assets/problems/backtrack.png)
通用写法的具体代码见下方代码区。
## 关键点解析
- 回溯法
- backtrack 解题公式
## 代码
* 语言支持JSC++
JavaScript Code:
```js
/*
* @lc app=leetcode id=78 lang=javascript
*
* [78] Subsets
*
* https://leetcode.com/problems/subsets/description/
*
* algorithms
* Medium (51.19%)
* Total Accepted: 351.6K
* Total Submissions: 674.8K
* Testcase Example: '[1,2,3]'
*
* Given a set of distinct integers, nums, return all possible subsets (the
* power set).
*
* Note: The solution set must not contain duplicate subsets.
*
* Example:
*
*
* Input: nums = [1,2,3]
* Output:
* [
* [3],
* [1],
* [2],
* [1,2,3],
* [1,3],
* [2,3],
* [1,2],
* []
* ]
*
*/
function backtrack(list, tempList, nums, start) {
list.push([...tempList]);
for(let i = start; i < nums.length; i++) {
tempList.push(nums[i]);
backtrack(list, tempList, nums, i + 1);
tempList.pop();
}
}
/**
* @param {number[]} nums
* @return {number[][]}
*/
var subsets = function(nums) {
const list = [];
backtrack(list, [], nums, 0);
return list;
};
```
C++ Code
```C++
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
auto ret = vector<vector<int>>();
auto tmp = vector<int>();
backtrack(ret, tmp, nums, 0);
return ret;
}
void backtrack(vector<vector<int>>& list, vector<int>& tempList, vector<int>& nums, int start) {
list.push_back(tempList);
for (auto i = start; i < nums.size(); ++i) {
tempList.push_back(nums[i]);
backtrack(list, tempList, nums, i + 1);
tempList.pop_back();
}
}
};
```
## 相关题目
- [39.combination-sum](./39.combination-sum.md)
- [40.combination-sum-ii](./40.combination-sum-ii.md)
- [46.permutations](./46.permutations.md)
- [47.permutations-ii](./47.permutations-ii.md)
- [90.subsets-ii](./90.subsets-ii.md)
- [113.path-sum-ii](./113.path-sum-ii.md)
- [131.palindrome-partitioning](./131.palindrome-partitioning.md)