143 lines
3.1 KiB
Markdown
143 lines
3.1 KiB
Markdown
|
|
|||
|
## 题目地址
|
|||
|
https://leetcode.com/problems/subsets/description/
|
|||
|
|
|||
|
## 题目描述
|
|||
|
```
|
|||
|
Given a set of distinct integers, nums, return all possible subsets (the power set).
|
|||
|
|
|||
|
Note: The solution set must not contain duplicate subsets.
|
|||
|
|
|||
|
Example:
|
|||
|
|
|||
|
Input: nums = [1,2,3]
|
|||
|
Output:
|
|||
|
[
|
|||
|
[3],
|
|||
|
[1],
|
|||
|
[2],
|
|||
|
[1,2,3],
|
|||
|
[1,3],
|
|||
|
[2,3],
|
|||
|
[1,2],
|
|||
|
[]
|
|||
|
]
|
|||
|
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 思路
|
|||
|
|
|||
|
这道题目是求集合,并不是`求极值`,因此动态规划不是特别切合,因此我们需要考虑别的方法。
|
|||
|
|
|||
|
这种题目其实有一个通用的解法,就是回溯法。
|
|||
|
网上也有大神给出了这种回溯法解题的
|
|||
|
[通用写法](https://leetcode.com/problems/combination-sum/discuss/16502/A-general-approach-to-backtracking-questions-in-Java-(Subsets-Permutations-Combination-Sum-Palindrome-Partitioning)),这里的所有的解法使用通用方法解答。
|
|||
|
除了这道题目还有很多其他题目可以用这种通用解法,具体的题目见后方相关题目部分。
|
|||
|
|
|||
|
我们先来看下通用解法的解题思路,我画了一张图:
|
|||
|
|
|||
|
![backtrack](../assets/problems/backtrack.png)
|
|||
|
|
|||
|
通用写法的具体代码见下方代码区。
|
|||
|
|
|||
|
## 关键点解析
|
|||
|
|
|||
|
- 回溯法
|
|||
|
- backtrack 解题公式
|
|||
|
|
|||
|
|
|||
|
## 代码
|
|||
|
|
|||
|
* 语言支持:JS,C++
|
|||
|
|
|||
|
JavaScript Code:
|
|||
|
```js
|
|||
|
|
|||
|
/*
|
|||
|
* @lc app=leetcode id=78 lang=javascript
|
|||
|
*
|
|||
|
* [78] Subsets
|
|||
|
*
|
|||
|
* https://leetcode.com/problems/subsets/description/
|
|||
|
*
|
|||
|
* algorithms
|
|||
|
* Medium (51.19%)
|
|||
|
* Total Accepted: 351.6K
|
|||
|
* Total Submissions: 674.8K
|
|||
|
* Testcase Example: '[1,2,3]'
|
|||
|
*
|
|||
|
* Given a set of distinct integers, nums, return all possible subsets (the
|
|||
|
* power set).
|
|||
|
*
|
|||
|
* Note: The solution set must not contain duplicate subsets.
|
|||
|
*
|
|||
|
* Example:
|
|||
|
*
|
|||
|
*
|
|||
|
* Input: nums = [1,2,3]
|
|||
|
* Output:
|
|||
|
* [
|
|||
|
* [3],
|
|||
|
* [1],
|
|||
|
* [2],
|
|||
|
* [1,2,3],
|
|||
|
* [1,3],
|
|||
|
* [2,3],
|
|||
|
* [1,2],
|
|||
|
* []
|
|||
|
* ]
|
|||
|
*
|
|||
|
*/
|
|||
|
function backtrack(list, tempList, nums, start) {
|
|||
|
list.push([...tempList]);
|
|||
|
for(let i = start; i < nums.length; i++) {
|
|||
|
tempList.push(nums[i]);
|
|||
|
backtrack(list, tempList, nums, i + 1);
|
|||
|
tempList.pop();
|
|||
|
}
|
|||
|
}
|
|||
|
/**
|
|||
|
* @param {number[]} nums
|
|||
|
* @return {number[][]}
|
|||
|
*/
|
|||
|
var subsets = function(nums) {
|
|||
|
const list = [];
|
|||
|
backtrack(list, [], nums, 0);
|
|||
|
return list;
|
|||
|
};
|
|||
|
```
|
|||
|
C++ Code:
|
|||
|
```C++
|
|||
|
class Solution {
|
|||
|
public:
|
|||
|
vector<vector<int>> subsets(vector<int>& nums) {
|
|||
|
auto ret = vector<vector<int>>();
|
|||
|
auto tmp = vector<int>();
|
|||
|
backtrack(ret, tmp, nums, 0);
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
void backtrack(vector<vector<int>>& list, vector<int>& tempList, vector<int>& nums, int start) {
|
|||
|
list.push_back(tempList);
|
|||
|
for (auto i = start; i < nums.size(); ++i) {
|
|||
|
tempList.push_back(nums[i]);
|
|||
|
backtrack(list, tempList, nums, i + 1);
|
|||
|
tempList.pop_back();
|
|||
|
}
|
|||
|
}
|
|||
|
};
|
|||
|
```
|
|||
|
|
|||
|
## 相关题目
|
|||
|
|
|||
|
- [39.combination-sum](./39.combination-sum.md)
|
|||
|
- [40.combination-sum-ii](./40.combination-sum-ii.md)
|
|||
|
- [46.permutations](./46.permutations.md)
|
|||
|
- [47.permutations-ii](./47.permutations-ii.md)
|
|||
|
- [90.subsets-ii](./90.subsets-ii.md)
|
|||
|
- [113.path-sum-ii](./113.path-sum-ii.md)
|
|||
|
- [131.palindrome-partitioning](./131.palindrome-partitioning.md)
|
|||
|
|
|||
|
|