250 lines
6.6 KiB
Markdown
250 lines
6.6 KiB
Markdown
|
# 题目地址(1261. 在受污染的二叉树中查找元素)
|
|||
|
|
|||
|
https://leetcode-cn.com/problems/find-elements-in-a-contaminated-binary-tree/submissions/
|
|||
|
|
|||
|
## 题目描述
|
|||
|
|
|||
|
```
|
|||
|
给出一个满足下述规则的二叉树:
|
|||
|
|
|||
|
root.val == 0
|
|||
|
如果 treeNode.val == x 且 treeNode.left != null,那么 treeNode.left.val == 2 * x + 1
|
|||
|
如果 treeNode.val == x 且 treeNode.right != null,那么 treeNode.right.val == 2 * x + 2
|
|||
|
现在这个二叉树受到「污染」,所有的 treeNode.val 都变成了 -1。
|
|||
|
|
|||
|
请你先还原二叉树,然后实现 FindElements 类:
|
|||
|
|
|||
|
FindElements(TreeNode* root) 用受污染的二叉树初始化对象,你需要先把它还原。
|
|||
|
bool find(int target) 判断目标值 target 是否存在于还原后的二叉树中并返回结果。
|
|||
|
|
|||
|
|
|||
|
示例 1:
|
|||
|
|
|||
|
![](https://tva1.sinaimg.cn/large/006tNbRwgy1gasy4qroxoj308w03b3yi.jpg)
|
|||
|
|
|||
|
输入:
|
|||
|
["FindElements","find","find"]
|
|||
|
[[[-1,null,-1]],[1],[2]]
|
|||
|
输出:
|
|||
|
[null,false,true]
|
|||
|
解释:
|
|||
|
FindElements findElements = new FindElements([-1,null,-1]);
|
|||
|
findElements.find(1); // return False
|
|||
|
findElements.find(2); // return True
|
|||
|
示例 2:
|
|||
|
|
|||
|
![](https://tva1.sinaimg.cn/large/006tNbRwgy1gasy5mlo3mj30b405iwep.jpg)
|
|||
|
|
|||
|
输入:
|
|||
|
["FindElements","find","find","find"]
|
|||
|
[[[-1,-1,-1,-1,-1]],[1],[3],[5]]
|
|||
|
输出:
|
|||
|
[null,true,true,false]
|
|||
|
解释:
|
|||
|
FindElements findElements = new FindElements([-1,-1,-1,-1,-1]);
|
|||
|
findElements.find(1); // return True
|
|||
|
findElements.find(3); // return True
|
|||
|
findElements.find(5); // return False
|
|||
|
示例 3:
|
|||
|
|
|||
|
![](https://tva1.sinaimg.cn/large/006tNbRwgy1gasy5sr25yj308i07maa8.jpg)
|
|||
|
|
|||
|
输入:
|
|||
|
["FindElements","find","find","find","find"]
|
|||
|
[[[-1,null,-1,-1,null,-1]],[2],[3],[4],[5]]
|
|||
|
输出:
|
|||
|
[null,true,false,false,true]
|
|||
|
解释:
|
|||
|
FindElements findElements = new FindElements([-1,null,-1,-1,null,-1]);
|
|||
|
findElements.find(2); // return True
|
|||
|
findElements.find(3); // return False
|
|||
|
findElements.find(4); // return False
|
|||
|
findElements.find(5); // return True
|
|||
|
|
|||
|
|
|||
|
提示:
|
|||
|
|
|||
|
TreeNode.val == -1
|
|||
|
二叉树的高度不超过 20
|
|||
|
节点的总数在 [1, 10^4] 之间
|
|||
|
调用 find() 的总次数在 [1, 10^4] 之间
|
|||
|
0 <= target <= 10^6
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 暴力法
|
|||
|
|
|||
|
### 思路
|
|||
|
|
|||
|
最简单想法就是递归建立树,然后 find 的时候递归查找即可,代码也很简单。
|
|||
|
|
|||
|
### 代码
|
|||
|
|
|||
|
Pythpn Code:
|
|||
|
|
|||
|
```python
|
|||
|
# Definition for a binary tree node.
|
|||
|
# class TreeNode:
|
|||
|
# def __init__(self, x):
|
|||
|
# self.val = x
|
|||
|
# self.left = None
|
|||
|
# self.right = None
|
|||
|
|
|||
|
class FindElements:
|
|||
|
node = None
|
|||
|
def __init__(self, root: TreeNode):
|
|||
|
def recover(node):
|
|||
|
if not node:
|
|||
|
return node;
|
|||
|
if node.left:
|
|||
|
node.left.val = 2 * node.val + 1
|
|||
|
if node.right:
|
|||
|
node.right.val = 2 * node.val + 2
|
|||
|
recover(node.left)
|
|||
|
recover(node.right)
|
|||
|
return node
|
|||
|
root.val = 0
|
|||
|
self.node = recover(root)
|
|||
|
|
|||
|
|
|||
|
def find(self, target: int) -> bool:
|
|||
|
def findInTree(node, target):
|
|||
|
if not node:
|
|||
|
return False
|
|||
|
if node.val == target:
|
|||
|
return True
|
|||
|
return findInTree(node.left, target) or findInTree(node.right, target)
|
|||
|
return findInTree(self.node, target)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# Your FindElements object will be instantiated and called as such:
|
|||
|
# obj = FindElements(root)
|
|||
|
# param_1 = obj.find(target)
|
|||
|
```
|
|||
|
|
|||
|
上述代码会超时,我们来考虑优化。
|
|||
|
|
|||
|
## 空间换时间
|
|||
|
|
|||
|
### 思路
|
|||
|
|
|||
|
上述代码会超时,我们考虑使用空间换时间。 建立树的时候,我们将所有值存到一个集合中去。当需要 find 的时候,我们直接查找 set 即可,时间复杂度 O(1)。
|
|||
|
|
|||
|
### 代码
|
|||
|
|
|||
|
```python
|
|||
|
# Definition for a binary tree node.
|
|||
|
# class TreeNode:
|
|||
|
# def __init__(self, x):
|
|||
|
# self.val = x
|
|||
|
# self.left = None
|
|||
|
# self.right = None
|
|||
|
|
|||
|
class FindElements:
|
|||
|
def __init__(self, root: TreeNode):
|
|||
|
# set 不能放在init外侧。 因为测试用例之间不会销毁FindElements的变量
|
|||
|
self.seen = set()
|
|||
|
def recover(node):
|
|||
|
if not node:
|
|||
|
return node;
|
|||
|
if node.left:
|
|||
|
node.left.val = 2 * node.val + 1
|
|||
|
self.seen.add(node.left.val)
|
|||
|
if node.right:
|
|||
|
node.right.val = 2 * node.val + 2
|
|||
|
self.seen.add(node.right.val)
|
|||
|
recover(node.left)
|
|||
|
recover(node.right)
|
|||
|
return node
|
|||
|
root.val = 0
|
|||
|
self.seen.add(0)
|
|||
|
self.node = recover(root)
|
|||
|
|
|||
|
|
|||
|
def find(self, target: int) -> bool:
|
|||
|
return target in self.seen
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# Your FindElements object will be instantiated and called as such:
|
|||
|
# obj = FindElements(root)
|
|||
|
# param_1 = obj.find(target)
|
|||
|
```
|
|||
|
|
|||
|
这种解法可以 AC,但是在数据量非常大的时候,可能 MLE,我们继续考虑优化。
|
|||
|
|
|||
|
## 二进制法
|
|||
|
|
|||
|
### 思路
|
|||
|
|
|||
|
这是一种非常巧妙的做法。
|
|||
|
|
|||
|
如果我们把树中的数全部加 1 会怎么样?
|
|||
|
|
|||
|
![](https://tva1.sinaimg.cn/large/006tNbRwly1gasypfuvuvj30rs0kudjr.jpg)
|
|||
|
(图参考 https://leetcode.com/problems/find-elements-in-a-contaminated-binary-tree/discuss/431229/Python-Special-Way-for-find()-without-HashSet-O(1)-Space-O(logn)-Time)
|
|||
|
|
|||
|
仔细观察发现,每一行的左右子树分别有不同的前缀:
|
|||
|
|
|||
|
![](https://tva1.sinaimg.cn/large/006tNbRwgy1gasz0x09koj312y0sgnnt.jpg)
|
|||
|
|
|||
|
Ok,那么算法就来了。为了便于理解,我们来举个具体的例子,比如 target 是 9,我们首先将其加 1,二进制表示就是 1010。不考虑第一位,就是 010,我们只要:
|
|||
|
|
|||
|
- 0 向左 👈
|
|||
|
- 1 向右 👉
|
|||
|
- - 0 向左 👈
|
|||
|
|
|||
|
就可以找到 9 了。
|
|||
|
|
|||
|
> 0 表示向左 , 1 表示向右
|
|||
|
|
|||
|
### 代码
|
|||
|
|
|||
|
```python
|
|||
|
# Definition for a binary tree node.
|
|||
|
# class TreeNode:
|
|||
|
# def __init__(self, x):
|
|||
|
# self.val = x
|
|||
|
# self.left = None
|
|||
|
# self.right = None
|
|||
|
|
|||
|
class FindElements:
|
|||
|
node = None
|
|||
|
def __init__(self, root: TreeNode):
|
|||
|
def recover(node):
|
|||
|
if not node:
|
|||
|
return node;
|
|||
|
if node.left:
|
|||
|
node.left.val = 2 * node.val + 1
|
|||
|
if node.right:
|
|||
|
node.right.val = 2 * node.val + 2
|
|||
|
recover(node.left)
|
|||
|
recover(node.right)
|
|||
|
return node
|
|||
|
root.val = 0
|
|||
|
self.node = recover(root)
|
|||
|
|
|||
|
|
|||
|
def find(self, target: int) -> bool:
|
|||
|
node = self.node
|
|||
|
for bit in bin(target+1)[3:]:
|
|||
|
node = node and (node.left, node.right)[int(bit)]
|
|||
|
return bool(node)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
# Your FindElements object will be instantiated and called as such:
|
|||
|
# obj = FindElements(root)
|
|||
|
# param_1 = obj.find(target)
|
|||
|
```
|
|||
|
|
|||
|
## 关键点解析
|
|||
|
|
|||
|
- 空间换时间
|
|||
|
- 二进制思维
|
|||
|
- 将 target + 1
|