leecode/problems/20.validParentheses.md

132 lines
3.1 KiB
Markdown
Raw Normal View History

2020-05-22 18:17:19 +08:00
## 题目地址
https://leetcode.com/problems/valid-parentheses/description
## 题目描述
```
Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid.
An input string is valid if:
Open brackets must be closed by the same type of brackets.
Open brackets must be closed in the correct order.
Note that an empty string is also considered valid.
Example 1:
Input: "()"
Output: true
Example 2:
Input: "()[]{}"
Output: true
Example 3:
Input: "(]"
Output: false
Example 4:
Input: "([)]"
Output: false
Example 5:
Input: "{[]}"
Output: true
```
## 思路
关于这道题的思路,邓俊辉讲的非常好,没有看过的同学可以看一下,[视频地址](http://www.xuetangx.com/courses/course-v1:TsinghuaX+30240184+sp/courseware/ad1a23c053df4501a3facd66ef6ccfa9/8d6f450e7f7a445098ae1d507fda80f6/)。
使用栈,遍历输入字符串
如果当前字符为左半边括号时,则将其压入栈中
如果遇到右半边括号时,分类讨论:
1如栈不为空且为对应的左半边括号则取出栈顶元素继续循环
2若此时栈为空则直接返回 false
3若不为对应的左半边括号反之返回 false
![20.validParentheses](../assets/20.validParentheses.gif)
(图片来自: https://github.com/MisterBooo/LeetCodeAnimation)
> 值得注意的是,如果题目要求只有一种括号,那么我们其实可以使用更简洁,更省内存的方式 - 计数器来进行求解,而
不必要使用栈。
> 事实上,这类问题还可以进一步扩展,我们可以去解析类似 HTML 等标记语法, 比如 <p></p> <body></body>
## 关键点解析
1. 栈的基本特点和操作
2. 如果你用的是 JS 没有现成的栈,可以用数组来模拟
入: push 出pop
> 入: push 出 shift 就是队列
## 代码
* 语言支持JSPython
Javascript Code:
```js
/**
* @param {string} s
* @return {boolean}
*/
var isValid = function(s) {
let valid = true;
const stack = [];
const mapper = {
'{': "}",
"[": "]",
"(": ")"
}
for(let i in s) {
const v = s[i];
if (['(', '[', '{'].indexOf(v) > -1) {
stack.push(v);
} else {
const peak = stack.pop();
if (v !== mapper[peak]) {
return false;
}
}
}
if (stack.length > 0) return false;
return valid;
};
```
Python Code:
```
class Solution:
def isValid(self,s):
stack = []
map = {
"{":"}",
"[":"]",
"(":")"
}
for x in s:
if x in map:
stack.append(map[x])
else:
if len(stack)!=0:
top_element = stack.pop()
if x != top_element:
return False
else:
continue
else:
return False
return len(stack) == 0
```
## 扩展
如果让你检查 XML 标签是否闭合如何检查, 更进一步如果要你实现一个简单的 XML 的解析器,应该怎么实现?