leecode/problems/240.search-a-2-d-matrix-ii.md

113 lines
2.4 KiB
Markdown
Raw Normal View History

2020-05-22 18:17:19 +08:00
## 题目地址
https://leetcode.com/problems/search-a-2d-matrix-ii/description/
## 题目描述
```
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
Example:
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
```
## 思路
符合直觉的做法是两层循环遍历时间复杂度是O(m * n),
有没有时间复杂度更好的做法呢? 答案是有,那就是充分运用矩阵的特性(横向纵向都递增),
我们可以从角落左下或者右上开始遍历这样时间复杂度是O(m + n).
![](https://tva1.sinaimg.cn/large/0082zybply1gbrcf58gsqj30ft0b4wfv.jpg)
其中蓝色代表我们选择的起点元素, 红色代表目标元素。
## 关键点解析
- 从角落开始遍历,利用递增的特性简化时间复杂度
## 代码
代码支持JavaScript, Python3
JavaScript Code:
```js
/*
* @lc app=leetcode id=240 lang=javascript
*
* [240] Search a 2D Matrix II
*
* https://leetcode.com/problems/search-a-2d-matrix-ii/description/
*
*
*/
/**
* @param {number[][]} matrix
* @param {number} target
* @return {boolean}
*/
var searchMatrix = function(matrix, target) {
if (!matrix || matrix.length === 0) return 0;
let colIndex = 0;
let rowIndex = matrix.length - 1;
while(rowIndex > 0 && target < matrix[rowIndex][colIndex]) {
rowIndex --;
}
while(colIndex < matrix[0].length) {
if (target === matrix[rowIndex][colIndex]) return true;
if (target > matrix[rowIndex][colIndex]) {
colIndex ++;
} else if (rowIndex > 0){
rowIndex --;
} else {
return false;
}
}
return false;
};
```
Python Code:
```python
class Solution:
def searchMatrix(self, matrix, target):
m = len(matrix)
if m == 0:
return False
n = len(matrix[0])
i = m - 1
j = 0
while i >= 0 and j < n:
if matrix[i][j] == target:
return True
if matrix[i][j] > target:
i -= 1
else:
j += 1
return False
```