## 题目地址 https://leetcode.com/problems/optimize-water-distribution-in-a-village/ ## 题目描述 ``` There are n houses in a village. We want to supply water for all the houses by building wells and laying pipes. For each house i, we can either build a well inside it directly with cost wells[i], or pipe in water from another well to it. The costs to lay pipes between houses are given by the array pipes, where each pipes[i] = [house1, house2, cost] represents the cost to connect house1 and house2 together using a pipe. Connections are bidirectional. Find the minimum total cost to supply water to all houses. Example 1: Input: n = 3, wells = [1,2,2], pipes = [[1,2,1],[2,3,1]] Output: 3 Explanation: The image shows the costs of connecting houses using pipes. The best strategy is to build a well in the first house with cost 1 and connect the other houses to it with cost 2 so the total cost is 3. Constraints: 1 <= n <= 10000 wells.length == n 0 <= wells[i] <= 10^5 1 <= pipes.length <= 10000 1 <= pipes[i][0], pipes[i][1] <= n 0 <= pipes[i][2] <= 10^5 pipes[i][0] != pipes[i][1] ``` example 1 pic: ![example 1](../assets/problems/1168.optimize-water-distribution-in-a-village-example1.png) ## 思路 题意,在每个城市打井需要一定的花费,也可以用其他城市的井水,城市之间建立连接管道需要一定的花费,怎么样安排可以花费最少的前灌溉所有城市。 这是一道连通所有点的最短路径/最小生成树问题,把城市看成图中的点,管道连接城市看成是连接两个点之间的边。这里打井的花费是直接在点上,而且并不是所有 点之间都有边连接,为了方便,我们可以假想一个点`(root)0`,这里自身点的花费可以与 `0` 连接,花费可以是 `0-i` 之间的花费。这样我们就可以构建一个连通图包含所有的点和边。 那在一个连通图中求最短路径/最小生成树的问题. 参考延伸阅读中,维基百科针对这类题给出的几种解法。 解题步骤: 1. 创建 `POJO EdgeCost(node1, node2, cost) - 节点1 和 节点2 连接边的花费`。 2. 假想一个`root` 点 `0`,构建图 3. 连通所有节点和 `0`,`[0,i] - i 是节点 [1,n]`,`0-1` 是节点 `0` 和 `1` 的边,边的值是节点 `i` 上打井的花费 `wells[i]`; 4. 把打井花费和城市连接点转换成图的节点和边。 5. 对图的边的值排序(从小到大) 6. 遍历图的边,判断两个节点有没有连通 (`Union-Find`), - 已连通就跳过,继续访问下一条边 - 没有连通,记录花费,连通节点 7. 若所有节点已连通,求得的最小路径即为最小花费,返回 8. 对于每次`union`, 节点数 `n-1`, 如果 `n==0` 说明所有节点都已连通,可以提前退出,不需要继续访问剩余的边。 > 这里用加权Union-Find 判断两个节点是否连通,和连通未连通的节点。 举例:`n = 5, wells=[1,2,2,3,2], pipes=[[1,2,1],[2,3,1],[4,5,7]]` 如图: ![minimum cost](../assets/problems/1168.optimize-water-distribution-in-a-village-1.png) 从图中可以看到,最后所有的节点都是连通的。 #### 复杂度分析 - *时间复杂度:* `O(ElogE) - E 是图的边的个数` - *空间复杂度:* `O(E)` > 一个图最多有 `n(n-1)/2 - n 是图中节点个数` 条边 (完全连通图) ## 关键点分析 1. 构建图,得出所有边 2. 对所有边排序 3. 遍历所有的边(从小到大) 4. 对于每条边,检查是否已经连通,若没有连通,加上边上的值,连通两个节点。若已连通,跳过。 ## 代码 (`Java/Python3`) *Java code* ```java class OptimizeWaterDistribution { public int minCostToSupplyWater(int n, int[] wells, int[][] pipes) { List costs = new ArrayList<>(); for (int i = 1; i <= n; i++) { costs.add(new EdgeCost(0, i, wells[i - 1])); } for (int[] p : pipes) { costs.add(new EdgeCost(p[0], p[1], p[2])); } Collections.sort(costs); int minCosts = 0; UnionFind uf = new UnionFind(n); for (EdgeCost edge : costs) { int rootX = uf.find(edge.node1); int rootY = uf.find(edge.node2); if (rootX == rootY) continue; minCosts += edge.cost; uf.union(edge.node1, edge.node2); // for each union, we connnect one node n--; // if all nodes already connected, terminate early if (n == 0) { return minCosts; } } return minCosts; } class EdgeCost implements Comparable { int node1; int node2; int cost; public EdgeCost(int node1, int node2, int cost) { this.node1 = node1; this.node2 = node2; this.cost = cost; } @Override public int compareTo(EdgeCost o) { return this.cost - o.cost; } } class UnionFind { int[] parent; int[] rank; public UnionFind(int n) { parent = new int[n + 1]; for (int i = 0; i <= n; i++) { parent[i] = i; } rank = new int[n + 1]; } public int find(int x) { return x == parent[x] ? x : find(parent[x]); } public void union(int x, int y) { int px = find(x); int py = find(y); if (px == py) return; if (rank[px] >= rank[py]) { parent[py] = px; rank[px] += rank[py]; } else { parent[px] = py; rank[py] += rank[px]; } } } } ``` *Pythong3 code* ```python class Solution: def minCostToSupplyWater(self, n: int, wells: List[int], pipes: List[List[int]]) -> int: union_find = {i: i for i in range(n + 1)} def find(x): return x if x == union_find[x] else find(union_find[x]) def union(x, y): px = find(x) py = find(y) union_find[px] = py graph_wells = [[cost, 0, i] for i, cost in enumerate(wells, 1)] graph_pipes = [[cost, i, j] for i, j, cost in pipes] min_costs = 0 for cost, x, y in sorted(graph_wells + graph_pipes): if find(x) == find(y): continue union(x, y) min_costs += cost n -= 1 if n == 0: return min_costs ``` ## 延伸阅读 1. [最短路径问题](https://www.wikiwand.com/zh-hans/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98) 2. [Dijkstra算法](https://www.wikiwand.com/zh-hans/戴克斯特拉算法) 3. [Floyd-Warshall算法](https://www.wikiwand.com/zh-hans/Floyd-Warshall%E7%AE%97%E6%B3%95) 4. [Bellman-Ford算法](https://www.wikiwand.com/zh-hans/%E8%B4%9D%E5%B0%94%E6%9B%BC-%E7%A6%8F%E7%89%B9%E7%AE%97%E6%B3%95) 5. [Kruskal算法](https://www.wikiwand.com/zh-hans/%E5%85%8B%E9%B2%81%E6%96%AF%E5%85%8B%E5%B0%94%E6%BC%94%E7%AE%97%E6%B3%95) 6. [Prim's 算法](https://www.wikiwand.com/zh-hans/%E6%99%AE%E6%9E%97%E5%A7%86%E7%AE%97%E6%B3%95) 7. [最小生成树](https://www.wikiwand.com/zh/%E6%9C%80%E5%B0%8F%E7%94%9F%E6%88%90%E6%A0%91)