## 题目地址 https://leetcode.com/problems/lru-cache/description/ ## 题目描述 ``` Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item. Follow up: Could you do both operations in O(1) time complexity? Example: LRUCache cache = new LRUCache( 2 /* capacity */ ); cache.put(1, 1); cache.put(2, 2); cache.get(1); // returns 1 cache.put(3, 3); // evicts key 2 cache.get(2); // returns -1 (not found) cache.put(4, 4); // evicts key 1 cache.get(1); // returns -1 (not found) cache.get(3); // returns 3 cache.get(4); // returns 4 ``` ## 思路 `本题已被收录到我的新书中,敬请期待~` 由于是保留是最近使用的 N 条数据,这就和队列的特性很符合, 先进入队列的,先出队列。 因此思路就是用一个队列来记录目前缓存的所有 key, 每次 push 都进行判断,如果 超出最大容量限制则进行清除缓存的操作, 具体清除谁就按照刚才说的队列方式进行处理,同时对 key 进行入队操作。 get 的时候,如果缓存中有,则调整队列(具体操作为删除指定元素和入队两个操作)。 缓存中没有则返回-1 ## 关键点解析 - 队列简化操作 - 队列的操作是这道题的灵魂, 很容易少考虑情况 ## 代码 ```js /** * @param {number} capacity */ var LRUCache = function(capacity) { this.cache = {}; this.capacity = capacity; this.size = 0; this.queue = []; }; /** * @param {number} key * @return {number} */ LRUCache.prototype.get = function(key) { const hit = this.cache[key]; if (hit !== undefined) { this.queue = this.queue.filter(q => q !== key); this.queue.push(key); return hit; } return -1; }; /** * @param {number} key * @param {number} value * @return {void} */ LRUCache.prototype.put = function(key, value) { const hit = this.cache[key]; // update cache this.cache[key] = value; if (!hit) { // invalid cache and resize size; if (this.size === this.capacity) { // invalid cache const key = this.queue.shift(); this.cache[key] = undefined; } else { this.size = this.size + 1; } this.queue.push(key); } else { this.queue = this.queue.filter(q => q !== key); this.queue.push(key); } }; /** * Your LRUCache object will be instantiated and called as such: * var obj = new LRUCache(capacity) * var param_1 = obj.get(key) * obj.put(key,value) */ ``` 本题删除的时间复杂度是不符合要求的。 应该采用双向链表在 O(1) 时间找到前驱进行删除。