## 题目地址 https://leetcode.com/problems/implement-trie-prefix-tree/description/ ## 题目描述 ``` Implement a trie with insert, search, and startsWith methods. Example: Trie trie = new Trie(); trie.insert("apple"); trie.search("apple"); // returns true trie.search("app"); // returns false trie.startsWith("app"); // returns true trie.insert("app"); trie.search("app"); // returns true Note: You may assume that all inputs are consist of lowercase letters a-z. All inputs are guaranteed to be non-empty strings. ``` ## 思路 这是一道很直接的题目,上来就让你实现`前缀树(字典树)`。这算是基础数据结构中的 知识了,不清楚什么是字典树的可以查阅相关资料。 我们看到题目给出的使用方法`new Trie`, `insert`,`search`和`startWith`. 为了区分`search`和`startWith`我们需要增加一个标示来区分当前节点是否是某个单词的结尾。 因此节点的数据结构应该是: ```js function TrieNode(val) { this.val = val; // 当前的字母 this.children = []; // 题目要求字典仅有a-z,那么其长度最大为26(26个字母) this.isWord = false; } ``` 每次 insert 我们其实都是从根节点出发,一个一个找到我们需要添加的节点,修改 children 的值. 我们应该修改哪一个 child 呢? 我们需要一个函数来计算索引 ```js function computeIndex(c) { return c.charCodeAt(0) - "a".charCodeAt(0); } ``` 其实不管 insert, search 和 startWith 的逻辑都是差不多的,都是从 root 出发, 找到我们需要操作的 child, 然后进行相应操作(添加,修改,返回)。 ![208.implement-trie-prefix-tree-1](../assets/problems/208.implement-trie-prefix-tree-1.png) ## 关键点解析 - 前缀树 - 核心逻辑 ```js const c = word[i]; const current = computeIndex(c) if (!ws.children[current]) { ws.children[current] = new TrieNode(c); } ws = ws.children[current]; // 深度递增 } ``` ## 代码 ```js /* * @lc app=leetcode id=208 lang=javascript * * [208] Implement Trie (Prefix Tree) * * https://leetcode.com/problems/implement-trie-prefix-tree/description/ * * algorithms * Medium (36.93%) * Total Accepted: 172K * Total Submissions: 455.5K * Testcase Example: '["Trie","insert","search","search","startsWith","insert","search"]\n[[],["apple"],["apple"],["app"],["app"],["app"],["app"]]' * * Implement a trie with insert, search, and startsWith methods. * * Example: * * * Trie trie = new Trie(); * * trie.insert("apple"); * trie.search("apple"); // returns true * trie.search("app"); // returns false * trie.startsWith("app"); // returns true * trie.insert("app"); * trie.search("app"); // returns true * * * Note: * * * You may assume that all inputs are consist of lowercase letters a-z. * All inputs are guaranteed to be non-empty strings. * * */ function TrieNode(val) { this.val = val; this.children = []; this.isWord = false; } function computeIndex(c) { return c.charCodeAt(0) - "a".charCodeAt(0); } /** * Initialize your data structure here. */ var Trie = function() { this.root = new TrieNode(null); }; /** * Inserts a word into the trie. * @param {string} word * @return {void} */ Trie.prototype.insert = function(word) { let ws = this.root; for (let i = 0; i < word.length; i++) { const c = word[i]; const current = computeIndex(c); if (!ws.children[current]) { ws.children[current] = new TrieNode(c); } ws = ws.children[current]; } ws.isWord = true; }; /** * Returns if the word is in the trie. * @param {string} word * @return {boolean} */ Trie.prototype.search = function(word) { let ws = this.root; for (let i = 0; i < word.length; i++) { const c = word[i]; const current = computeIndex(c); if (!ws.children[current]) return false; ws = ws.children[current]; } return ws.isWord; }; /** * Returns if there is any word in the trie that starts with the given prefix. * @param {string} prefix * @return {boolean} */ Trie.prototype.startsWith = function(prefix) { let ws = this.root; for (let i = 0; i < prefix.length; i++) { const c = prefix[i]; const current = computeIndex(c); if (!ws.children[current]) return false; ws = ws.children[current]; } return true; }; /** * Your Trie object will be instantiated and called as such: * var obj = new Trie() * obj.insert(word) * var param_2 = obj.search(word) * var param_3 = obj.startsWith(prefix) */ ``` ## 相关题目 - [0211.add-and-search-word-data-structure-design](./211.add-and-search-word-data-structure-design.md) - [0212.word-search-ii](./212.word-search-ii.md) - [0472.concatenated-words](./problems/472.concatenated-words.md) - [0820.short-encoding-of-words](https://github.com/azl397985856/leetcode/blob/master/problems/820.short-encoding-of-words.md)