## 题目地址 https://leetcode.com/problems/sliding-window-maximum/description/ ## 题目描述 ``` Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window. Example: Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3 Output: [3,3,5,5,6,7] Explanation: Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7 Note: You may assume k is always valid, 1 ≤ k ≤ input array's size for non-empty array. Follow up: Could you solve it in linear time? ``` ## 思路 符合直觉的想法是直接遍历 nums, 然后然后用一个变量 slideWindow 去承载 k 个元素, 然后对 slideWindow 求最大值,这是可以的,时间复杂度是 O(n \* k).代码如下: JavaScript: ```js var maxSlidingWindow = function(nums, k) { // bad 时间复杂度O(n * k) if (nums.length === 0 || k === 0) return []; let slideWindow = []; const ret = []; for (let i = 0; i < nums.length - k + 1; i++) { for (let j = 0; j < k; j++) { slideWindow.push(nums[i + j]); } ret.push(Math.max(...slideWindow)); slideWindow = []; } return ret; }; ``` Python3: ```python class Solution: def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]: if k == 0: return [] res = [] for r in range(k - 1, len(nums)): res.append(max(nums[r - k + 1:r + 1])) return res ``` 但是如果真的是这样,这道题也不会是 hard 吧?这道题有一个 follow up,要求你用线性的时间去完成。 我们可以用双端队列来完成,思路是用一个双端队列来保存`接下来的滑动窗口可能成为最大值的数`。具体做法: - 入队列 - 移除失效元素,失效元素有两种 1. 一种是已经超出窗口范围了,比如我遍历到第4个元素,k = 3,那么i = 0的元素就不应该出现在双端队列中了 具体就是`索引大于 i - k + 1的元素都应该被清除` 2. 小于当前元素都没有利用价值了,具体就是`从后往前遍历(双端队列是一个递减队列)双端队列,如果小于当前元素就出队列` 如果你仔细观察的话,发现双端队列其实是一个递减的一个队列。因此队首的元素一定是最大的。用图来表示就是: ![](https://tva1.sinaimg.cn/large/0082zybply1gbvyn8ufbvj30hb0di75s.jpg) ## 关键点解析 - 双端队列简化时间复杂度 - 滑动窗口 ## 代码 JavaScript: ```js var maxSlidingWindow = function(nums, k) { // 双端队列优化时间复杂度, 时间复杂度O(n) const deque = []; // 存放在接下来的滑动窗口可能成为最大值的数 const ret = []; for (let i = 0; i < nums.length; i++) { // 清空失效元素 while (deque[0] < i - k + 1) { deque.shift(); } while (nums[deque[deque.length - 1]] < nums[i]) { deque.pop(); } deque.push(i); if (i >= k - 1) { ret.push(nums[deque[0]]); } } return ret; }; ``` Python3: ```python class Solution: def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]: deque, res, n = [], [], len(nums) for i in range(n): while deque and deque[0] < i - k + 1: deque.pop(0) while deque and nums[i] > nums[deque[-1]]: deque.pop(-1) deque.append(i) if i >= k - 1: res.append(nums[deque[0]]) return res ``` ## 扩展 ### 为什么用双端队列 因为删除无效元素的时候,会清除队首的元素(索引太小了 )或者队尾(元素太小了)的元素。 因此需要同时对队首和队尾进行操作,使用双端队列是一种合乎情理的做法。