## 题目地址 https://leetcode.com/problems/search-a-2d-matrix-ii/description/ ## 题目描述 ``` Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties: Integers in each row are sorted in ascending from left to right. Integers in each column are sorted in ascending from top to bottom. Example: Consider the following matrix: [ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ] Given target = 5, return true. Given target = 20, return false. ``` ## 思路 符合直觉的做法是两层循环遍历,时间复杂度是O(m * n), 有没有时间复杂度更好的做法呢? 答案是有,那就是充分运用矩阵的特性(横向纵向都递增), 我们可以从角落(左下或者右上)开始遍历,这样时间复杂度是O(m + n). ![](https://tva1.sinaimg.cn/large/0082zybply1gbrcf58gsqj30ft0b4wfv.jpg) 其中蓝色代表我们选择的起点元素, 红色代表目标元素。 ## 关键点解析 - 从角落开始遍历,利用递增的特性简化时间复杂度 ## 代码 代码支持:JavaScript, Python3 JavaScript Code: ```js /* * @lc app=leetcode id=240 lang=javascript * * [240] Search a 2D Matrix II * * https://leetcode.com/problems/search-a-2d-matrix-ii/description/ * * */ /** * @param {number[][]} matrix * @param {number} target * @return {boolean} */ var searchMatrix = function(matrix, target) { if (!matrix || matrix.length === 0) return 0; let colIndex = 0; let rowIndex = matrix.length - 1; while(rowIndex > 0 && target < matrix[rowIndex][colIndex]) { rowIndex --; } while(colIndex < matrix[0].length) { if (target === matrix[rowIndex][colIndex]) return true; if (target > matrix[rowIndex][colIndex]) { colIndex ++; } else if (rowIndex > 0){ rowIndex --; } else { return false; } } return false; }; ``` Python Code: ```python class Solution: def searchMatrix(self, matrix, target): m = len(matrix) if m == 0: return False n = len(matrix[0]) i = m - 1 j = 0 while i >= 0 and j < n: if matrix[i][j] == target: return True if matrix[i][j] > target: i -= 1 else: j += 1 return False ```