leecode/problems/1168.optimize-water-distribution-in-a-village-cn.md
2020-05-22 18:17:19 +08:00

187 lines
7.0 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## 题目地址
https://leetcode.com/problems/optimize-water-distribution-in-a-village/
## 题目描述
```
There are n houses in a village. We want to supply water for all the houses by building wells and laying pipes.
For each house i, we can either build a well inside it directly with cost wells[i], or pipe in water from another well to it. The costs to lay pipes between houses are given by the array pipes, where each pipes[i] = [house1, house2, cost] represents the cost to connect house1 and house2 together using a pipe. Connections are bidirectional.
Find the minimum total cost to supply water to all houses.
Example 1:
Input: n = 3, wells = [1,2,2], pipes = [[1,2,1],[2,3,1]]
Output: 3
Explanation:
The image shows the costs of connecting houses using pipes.
The best strategy is to build a well in the first house with cost 1 and connect the other houses to it with cost 2 so the total cost is 3.
Constraints:
1 <= n <= 10000
wells.length == n
0 <= wells[i] <= 10^5
1 <= pipes.length <= 10000
1 <= pipes[i][0], pipes[i][1] <= n
0 <= pipes[i][2] <= 10^5
pipes[i][0] != pipes[i][1]
```
example 1 pic:
![example 1](../assets/problems/1168.optimize-water-distribution-in-a-village-example1.png)
## 思路
题意,在每个城市打井需要一定的花费,也可以用其他城市的井水,城市之间建立连接管道需要一定的花费,怎么样安排可以花费最少的前灌溉所有城市。
这是一道连通所有点的最短路径/最小生成树问题,把城市看成图中的点,管道连接城市看成是连接两个点之间的边。这里打井的花费是直接在点上,而且并不是所有
点之间都有边连接,为了方便,我们可以假想一个点`root0`,这里自身点的花费可以与 `0` 连接,花费可以是 `0-i` 之间的花费。这样我们就可以构建一个连通图包含所有的点和边。
那在一个连通图中求最短路径/最小生成树的问题.
参考延伸阅读中,维基百科针对这类题给出的几种解法。
解题步骤:
1. 创建 `POJO EdgeCost(node1, node2, cost) - 节点1 和 节点2 连接边的花费`
2. 假想一个`root` 点 `0`,构建图
3. 连通所有节点和 `0``[0,i] - i 是节点 [1,n]``0-1` 是节点 `0``1` 的边,边的值是节点 `i` 上打井的花费 `wells[i]`;
4. 把打井花费和城市连接点转换成图的节点和边。
5. 对图的边的值排序(从小到大)
6. 遍历图的边,判断两个节点有没有连通 `Union-Find`
- 已连通就跳过,继续访问下一条边
- 没有连通,记录花费,连通节点
7. 若所有节点已连通,求得的最小路径即为最小花费,返回
8. 对于每次`union`, 节点数 `n-1`, 如果 `n==0` 说明所有节点都已连通,可以提前退出,不需要继续访问剩余的边。
> 这里用加权Union-Find 判断两个节点是否连通,和连通未连通的节点。
举例:`n = 5, wells=[1,2,2,3,2], pipes=[[1,2,1],[2,3,1],[4,5,7]]`
如图:
![minimum cost](../assets/problems/1168.optimize-water-distribution-in-a-village-1.png)
从图中可以看到,最后所有的节点都是连通的。
#### 复杂度分析
- *时间复杂度:* `O(ElogE) - E 是图的边的个数`
- *空间复杂度:* `O(E)`
> 一个图最多有 `n(n-1)/2 - n 是图中节点个数` 条边 (完全连通图)
## 关键点分析
1. 构建图,得出所有边
2. 对所有边排序
3. 遍历所有的边(从小到大)
4. 对于每条边,检查是否已经连通,若没有连通,加上边上的值,连通两个节点。若已连通,跳过。
## 代码 (`Java/Python3`)
*Java code*
```java
class OptimizeWaterDistribution {
public int minCostToSupplyWater(int n, int[] wells, int[][] pipes) {
List<EdgeCost> costs = new ArrayList<>();
for (int i = 1; i <= n; i++) {
costs.add(new EdgeCost(0, i, wells[i - 1]));
}
for (int[] p : pipes) {
costs.add(new EdgeCost(p[0], p[1], p[2]));
}
Collections.sort(costs);
int minCosts = 0;
UnionFind uf = new UnionFind(n);
for (EdgeCost edge : costs) {
int rootX = uf.find(edge.node1);
int rootY = uf.find(edge.node2);
if (rootX == rootY) continue;
minCosts += edge.cost;
uf.union(edge.node1, edge.node2);
// for each union, we connnect one node
n--;
// if all nodes already connected, terminate early
if (n == 0) {
return minCosts;
}
}
return minCosts;
}
class EdgeCost implements Comparable<EdgeCost> {
int node1;
int node2;
int cost;
public EdgeCost(int node1, int node2, int cost) {
this.node1 = node1;
this.node2 = node2;
this.cost = cost;
}
@Override
public int compareTo(EdgeCost o) {
return this.cost - o.cost;
}
}
class UnionFind {
int[] parent;
int[] rank;
public UnionFind(int n) {
parent = new int[n + 1];
for (int i = 0; i <= n; i++) {
parent[i] = i;
}
rank = new int[n + 1];
}
public int find(int x) {
return x == parent[x] ? x : find(parent[x]);
}
public void union(int x, int y) {
int px = find(x);
int py = find(y);
if (px == py) return;
if (rank[px] >= rank[py]) {
parent[py] = px;
rank[px] += rank[py];
} else {
parent[px] = py;
rank[py] += rank[px];
}
}
}
}
```
*Pythong3 code*
```python
class Solution:
def minCostToSupplyWater(self, n: int, wells: List[int], pipes: List[List[int]]) -> int:
union_find = {i: i for i in range(n + 1)}
def find(x):
return x if x == union_find[x] else find(union_find[x])
def union(x, y):
px = find(x)
py = find(y)
union_find[px] = py
graph_wells = [[cost, 0, i] for i, cost in enumerate(wells, 1)]
graph_pipes = [[cost, i, j] for i, j, cost in pipes]
min_costs = 0
for cost, x, y in sorted(graph_wells + graph_pipes):
if find(x) == find(y):
continue
union(x, y)
min_costs += cost
n -= 1
if n == 0:
return min_costs
```
## 延伸阅读
1. [最短路径问题](https://www.wikiwand.com/zh-hans/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98)
2. [Dijkstra算法](https://www.wikiwand.com/zh-hans/戴克斯特拉算法)
3. [Floyd-Warshall算法](https://www.wikiwand.com/zh-hans/Floyd-Warshall%E7%AE%97%E6%B3%95)
4. [Bellman-Ford算法](https://www.wikiwand.com/zh-hans/%E8%B4%9D%E5%B0%94%E6%9B%BC-%E7%A6%8F%E7%89%B9%E7%AE%97%E6%B3%95)
5. [Kruskal算法](https://www.wikiwand.com/zh-hans/%E5%85%8B%E9%B2%81%E6%96%AF%E5%85%8B%E5%B0%94%E6%BC%94%E7%AE%97%E6%B3%95)
6. [Prim's 算法](https://www.wikiwand.com/zh-hans/%E6%99%AE%E6%9E%97%E5%A7%86%E7%AE%97%E6%B3%95)
7. [最小生成树](https://www.wikiwand.com/zh/%E6%9C%80%E5%B0%8F%E7%94%9F%E6%88%90%E6%A0%91)