157 lines
3.3 KiB
Markdown
157 lines
3.3 KiB
Markdown
## 题目地址
|
||
|
||
https://leetcode.com/problems/binary-tree-preorder-traversal/description/
|
||
|
||
## 题目描述
|
||
|
||
```
|
||
Given a binary tree, return the preorder traversal of its nodes' values.
|
||
|
||
Example:
|
||
|
||
Input: [1,null,2,3]
|
||
1
|
||
\
|
||
2
|
||
/
|
||
3
|
||
|
||
Output: [1,2,3]
|
||
Follow up: Recursive solution is trivial, could you do it iteratively?
|
||
|
||
```
|
||
|
||
## 思路
|
||
|
||
这道题目是前序遍历,这个和之前的`leetcode 94 号问题 - 中序遍历`完全不一回事。
|
||
|
||
前序遍历是`根左右`的顺序,注意是`根`开始,那么就很简单。直接先将根节点入栈,然后
|
||
看有没有右节点,有则入栈,再看有没有左节点,有则入栈。 然后出栈一个元素,重复即可。
|
||
|
||
> 其他树的非递归遍历课没这么简单
|
||
|
||
## 关键点解析
|
||
|
||
- 二叉树的基本操作(遍历)
|
||
> 不同的遍历算法差异还是蛮大的
|
||
- 如果非递归的话利用栈来简化操作
|
||
|
||
- 如果数据规模不大的话,建议使用递归
|
||
|
||
- 递归的问题需要注意两点,一个是终止条件,一个如何缩小规模
|
||
|
||
1. 终止条件,自然是当前这个元素是 null(链表也是一样)
|
||
|
||
2. 由于二叉树本身就是一个递归结构, 每次处理一个子树其实就是缩小了规模,
|
||
难点在于如何合并结果,这里的合并结果其实就是`mid.concat(left).concat(right)`,
|
||
mid 是一个具体的节点,left 和 right`递归求出即可`
|
||
|
||
## 代码
|
||
|
||
- 语言支持:JS,C++
|
||
|
||
JavaScript Code:
|
||
|
||
```js
|
||
/*
|
||
* @lc app=leetcode id=144 lang=javascript
|
||
*
|
||
* [144] Binary Tree Preorder Traversal
|
||
*
|
||
* https://leetcode.com/problems/binary-tree-preorder-traversal/description/
|
||
*
|
||
* algorithms
|
||
* Medium (50.36%)
|
||
* Total Accepted: 314K
|
||
* Total Submissions: 621.2K
|
||
* Testcase Example: '[1,null,2,3]'
|
||
*
|
||
* Given a binary tree, return the preorder traversal of its nodes' values.
|
||
*
|
||
* Example:
|
||
*
|
||
*
|
||
* Input: [1,null,2,3]
|
||
* 1
|
||
* \
|
||
* 2
|
||
* /
|
||
* 3
|
||
*
|
||
* Output: [1,2,3]
|
||
*
|
||
*
|
||
* Follow up: Recursive solution is trivial, could you do it iteratively?
|
||
*
|
||
*/
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* function TreeNode(val) {
|
||
* this.val = val;
|
||
* this.left = this.right = null;
|
||
* }
|
||
*/
|
||
/**
|
||
* @param {TreeNode} root
|
||
* @return {number[]}
|
||
*/
|
||
var preorderTraversal = function(root) {
|
||
// 1. Recursive solution
|
||
|
||
// if (!root) return [];
|
||
|
||
// return [root.val].concat(preorderTraversal(root.left)).concat(preorderTraversal(root.right));
|
||
|
||
// 2. iterative solutuon
|
||
|
||
if (!root) return [];
|
||
const ret = [];
|
||
const stack = [root];
|
||
let t = stack.pop();
|
||
|
||
while (t) {
|
||
ret.push(t.val);
|
||
if (t.right) {
|
||
stack.push(t.right);
|
||
}
|
||
if (t.left) {
|
||
stack.push(t.left);
|
||
}
|
||
t = stack.pop();
|
||
}
|
||
|
||
return ret;
|
||
};
|
||
```
|
||
|
||
C++ Code:
|
||
|
||
```C++
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* struct TreeNode {
|
||
* int val;
|
||
* TreeNode *left;
|
||
* TreeNode *right;
|
||
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
|
||
* };
|
||
*/
|
||
class Solution {
|
||
public:
|
||
vector<int> preorderTraversal(TreeNode* root) {
|
||
vector<int> v;
|
||
vector<TreeNode*> s;
|
||
while (root != NULL || !s.empty()) {
|
||
while (root != NULL) {
|
||
v.push_back(root->val);
|
||
s.push_back(root);
|
||
root = root->left;
|
||
}
|
||
root = s.back()->right;
|
||
s.pop_back();
|
||
}
|
||
return v;
|
||
}
|
||
};
|
||
```
|