190 lines
3.6 KiB
Markdown
190 lines
3.6 KiB
Markdown
## 题目地址
|
||
|
||
https://leetcode.com/problems/kth-smallest-element-in-a-bst/description/
|
||
|
||
## 题目描述
|
||
|
||
```
|
||
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
|
||
|
||
Note:
|
||
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
|
||
|
||
Example 1:
|
||
|
||
Input: root = [3,1,4,null,2], k = 1
|
||
3
|
||
/ \
|
||
1 4
|
||
\
|
||
2
|
||
Output: 1
|
||
Example 2:
|
||
|
||
Input: root = [5,3,6,2,4,null,null,1], k = 3
|
||
5
|
||
/ \
|
||
3 6
|
||
/ \
|
||
2 4
|
||
/
|
||
1
|
||
Output: 3
|
||
Follow up:
|
||
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
|
||
|
||
```
|
||
|
||
## 思路
|
||
|
||
解法一:
|
||
|
||
由于‘中序遍历一个二叉查找树(BST)的结果是一个有序数组’ ,因此我们只需要在遍历到第k个,返回当前元素即可。
|
||
中序遍历相关思路请查看[binary-tree-traversal](../thinkings/binary-tree-traversal.md)
|
||
|
||
解法二:
|
||
|
||
联想到二叉搜索树的性质,root 大于左子树,小于右子树,如果左子树的节点数目等于 K-1,那么 root 就是结果,否则如果左子树节点数目小于 K-1,那么结果必然在右子树,否则就在左子树。
|
||
因此在搜索的时候同时返回节点数目,跟 K 做对比,就能得出结果了。
|
||
|
||
|
||
## 关键点解析
|
||
|
||
- 中序遍历
|
||
|
||
## 代码
|
||
|
||
解法一:
|
||
|
||
JavaScript Code:
|
||
|
||
```js
|
||
|
||
|
||
/*
|
||
* @lc app=leetcode id=230 lang=javascript
|
||
*
|
||
* [230] Kth Smallest Element in a BST
|
||
*/
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* function TreeNode(val) {
|
||
* this.val = val;
|
||
* this.left = this.right = null;
|
||
* }
|
||
*/
|
||
/**
|
||
* @param {TreeNode} root
|
||
* @param {number} k
|
||
* @return {number}
|
||
*/
|
||
var kthSmallest = function(root, k) {
|
||
const stack = [root];
|
||
let cur = root;
|
||
let i = 0;
|
||
|
||
function insertAllLefts(cur) {
|
||
while(cur && cur.left) {
|
||
const l = cur.left;
|
||
stack.push(l);
|
||
cur = l;
|
||
}
|
||
}
|
||
insertAllLefts(cur);
|
||
|
||
while(cur = stack.pop()) {
|
||
i++;
|
||
if (i === k) return cur.val;
|
||
const r = cur.right;
|
||
|
||
if (r) {
|
||
stack.push(r);
|
||
insertAllLefts(r);
|
||
}
|
||
}
|
||
|
||
return -1;
|
||
|
||
|
||
};
|
||
```
|
||
|
||
Java Code:
|
||
|
||
```java
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* public class TreeNode {
|
||
* int val;
|
||
* TreeNode left;
|
||
* TreeNode right;
|
||
* TreeNode(int x) { val = x; }
|
||
* }
|
||
*/
|
||
private int count = 1;
|
||
private int res;
|
||
|
||
public int KthSmallest (TreeNode root, int k) {
|
||
inorder(root, k);
|
||
return res;
|
||
}
|
||
|
||
public void inorder (TreeNode root, int k) {
|
||
if (root == null) return;
|
||
|
||
inorder(root.left, k);
|
||
|
||
if (count++ == k) {
|
||
res = root.val;
|
||
return;
|
||
}
|
||
|
||
inorder(root.right, k);
|
||
}
|
||
```
|
||
|
||
解法二:
|
||
|
||
JavaScript Code:
|
||
|
||
```js
|
||
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* function TreeNode(val) {
|
||
* this.val = val;
|
||
* this.left = this.right = null;
|
||
* }
|
||
*/
|
||
function nodeCount(node) {
|
||
if (node === null) return 0;
|
||
|
||
const l = nodeCount(node.left);
|
||
const r = nodeCount(node.right);
|
||
|
||
return 1 + l + r;
|
||
}
|
||
/**
|
||
* @param {TreeNode} root
|
||
* @param {number} k
|
||
* @return {number}
|
||
*/
|
||
var kthSmallest = function(root, k) {
|
||
const c = nodeCount(root.left);
|
||
if (c === k - 1) return root.val;
|
||
else if (c < k - 1) return kthSmallest(root.right, k - c - 1);
|
||
return kthSmallest(root.left, k)
|
||
};
|
||
|
||
```
|
||
|
||
## 扩展
|
||
|
||
这道题有一个follow up:
|
||
|
||
`What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently?
|
||
How would you optimize the kthSmallest routine?`
|
||
|
||
大家可以思考一下。
|
||
|