2.8 KiB
2.8 KiB
题目地址
https://leetcode.com/problems/perfect-squares/description/
题目描述
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.
Example 1:
Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.
思路
直接递归处理即可,但是这种暴力的解法很容易超时。如果你把递归的过程化成一棵树的话(其实就是递归树), 可以看出中间有很多重复的计算。
如果能将重复的计算缓存下来,说不定能够解决时间复杂度太高的问题。
递归对内存的要求也很高, 如果数字非常大,也会面临爆栈的风险,将递归转化为循环可以解决。
递归 + 缓存的方式代码如下:
const mapper = {};
function d(n, level) {
if (n === 0) return level;
let i = 1;
const arr = [];
while (n - i * i >= 0) {
const hit = mapper[n - i * i];
if (hit) {
arr.push(hit + level);
} else {
const depth = d(n - i * i, level + 1) - level;
mapper[n - i * i] = depth;
arr.push(depth + level);
}
i++;
}
return Math.min(...arr);
}
/**
* @param {number} n
* @return {number}
*/
var numSquares = function(n) {
return d(n, 0);
};
如果使用 DP,其实本质上和递归 + 缓存 差不多。
DP 的代码见代码区。
关键点解析
-
如果用递归 + 缓存, 缓存的设计很重要 我的做法是 key 就是 n,value 是以 n 为起点,到达底端的深度。 下次取出缓存的时候用当前的 level + 存的深度 就是我们想要的 level.
-
使用动态规划的核心点还是选和不选的问题
for (let i = 1; i <= n; i++) {
for (let j = 1; j * j <= i; j++) {
// 不选(dp[i]) 还是 选(dp[i - j * j])
dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
}
}
代码
/*
* @lc app=leetcode id=279 lang=javascript
*
* [279] Perfect Squares
*
* https://leetcode.com/problems/perfect-squares/description/
*
* algorithms
* Medium (40.98%)
* Total Accepted: 168.2K
* Total Submissions: 408.5K
* Testcase Example: '12'
*
* Given a positive integer n, find the least number of perfect square numbers
* (for example, 1, 4, 9, 16, ...) which sum to n.
*
* Example 1:
*
*
* Input: n = 12
* Output: 3
* Explanation: 12 = 4 + 4 + 4.
*
* Example 2:
*
*
* Input: n = 13
* Output: 2
* Explanation: 13 = 4 + 9.
*/
/**
* @param {number} n
* @return {number}
*/
var numSquares = function(n) {
if (n <= 0) {
return 0;
}
const dp = Array(n + 1).fill(Number.MAX_VALUE);
dp[0] = 0;
for (let i = 1; i <= n; i++) {
for (let j = 1; j * j <= i; j++) {
// 不选(dp[i]) 还是 选(dp[i - j * j])
dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
}
}
return dp[n];
};