150 lines
4.2 KiB
Markdown
150 lines
4.2 KiB
Markdown
## 题目地址
|
||
https://leetcode.com/problems/search-in-rotated-sorted-array/
|
||
|
||
## 题目描述
|
||
|
||
```
|
||
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
|
||
|
||
(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).
|
||
|
||
You are given a target value to search. If found in the array return its index, otherwise return -1.
|
||
|
||
You may assume no duplicate exists in the array.
|
||
|
||
Your algorithm's runtime complexity must be in the order of O(log n).
|
||
|
||
Example 1:
|
||
|
||
Input: nums = [4,5,6,7,0,1,2], target = 0
|
||
Output: 4
|
||
Example 2:
|
||
|
||
Input: nums = [4,5,6,7,0,1,2], target = 3
|
||
Output: -1
|
||
|
||
```
|
||
|
||
## 思路
|
||
|
||
这是一个我在网上看到的前端头条技术终面的一个算法题。
|
||
|
||
题目要求时间复杂度为logn,因此基本就是二分法了。 这道题目不是直接的有序数组,不然就是easy了。
|
||
|
||
首先要知道,我们随便选择一个点,将数组分为前后两部分,其中一部分一定是有序的。
|
||
|
||
具体步骤:
|
||
|
||
- 我们可以先找出mid,然后根据mid来判断,mid是在有序的部分还是无序的部分
|
||
|
||
假如mid小于start,则mid一定在右边有序部分。
|
||
假如mid大于等于start, 则mid一定在左边有序部分。
|
||
|
||
> 注意等号的考虑
|
||
|
||
- 然后我们继续判断target在哪一部分, 我们就可以舍弃另一部分了
|
||
|
||
我们只需要比较target和有序部分的边界关系就行了。 比如mid在右侧有序部分,即[mid, end]
|
||
那么我们只需要判断 target >= mid && target <= end 就能知道target在右侧有序部分,我们就
|
||
可以舍弃左边部分了(start = mid + 1), 反之亦然。
|
||
|
||
我们以([6,7,8,1,2,3,4,5], 4)为例讲解一下:
|
||
|
||
![search-in-rotated-sorted-array-1](../assets/problems/search-in-rotated-sorted-array-1.jpg)
|
||
|
||
|
||
![search-in-rotated-sorted-array-1](../assets/problems/search-in-rotated-sorted-array-2.jpg)
|
||
|
||
|
||
## 关键点解析
|
||
|
||
- 二分法
|
||
- 找出有序区间,然后根据target是否在有序区间舍弃一半元素
|
||
## 代码
|
||
|
||
* 语言支持: Javascript,Python3
|
||
|
||
```js
|
||
/*
|
||
* @lc app=leetcode id=33 lang=javascript
|
||
*
|
||
* [33] Search in Rotated Sorted Array
|
||
*/
|
||
/**
|
||
* @param {number[]} nums
|
||
* @param {number} target
|
||
* @return {number}
|
||
*/
|
||
var search = function(nums, target) {
|
||
// 时间复杂度:O(logn)
|
||
// 空间复杂度:O(1)
|
||
// [6,7,8,1,2,3,4,5]
|
||
let start = 0;
|
||
let end = nums.length - 1;
|
||
|
||
while (start <= end) {
|
||
const mid = start + ((end - start) >> 1);
|
||
if (nums[mid] === target) return mid;
|
||
|
||
// [start, mid]有序
|
||
|
||
// ️⚠️注意这里的等号
|
||
if (nums[mid] >= nums[start]) {
|
||
//target 在 [start, mid] 之间
|
||
|
||
// 其实target不可能等于nums[mid], 但是为了对称,我还是加上了等号
|
||
if (target >= nums[start] && target <= nums[mid]) {
|
||
end = mid - 1;
|
||
} else {
|
||
//target 不在 [start, mid] 之间
|
||
start = mid + 1;
|
||
}
|
||
} else {
|
||
// [mid, end]有序
|
||
|
||
// target 在 [mid, end] 之间
|
||
if (target >= nums[mid] && target <= nums[end]) {
|
||
start = mid + 1;
|
||
} else {
|
||
// target 不在 [mid, end] 之间
|
||
end = mid - 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
return -1;
|
||
};
|
||
```
|
||
Python3 Code:
|
||
```python
|
||
class Solution:
|
||
def search(self, nums: List[int], target: int) -> int:
|
||
"""用二分法,先判断左右两边哪一边是有序的,再判断是否在有序的列表之内"""
|
||
if len(nums) <= 0:
|
||
return -1
|
||
|
||
left = 0
|
||
right = len(nums) - 1
|
||
while left < right:
|
||
mid = (right - left) // 2 + left
|
||
if nums[mid] == target:
|
||
return mid
|
||
|
||
# 如果中间的值大于最左边的值,说明左边有序
|
||
if nums[mid] > nums[left]:
|
||
if nums[left] <= target <= nums[mid]:
|
||
right = mid
|
||
else:
|
||
# 这里 +1,因为上面是 <= 符号
|
||
left = mid + 1
|
||
# 否则右边有序
|
||
else:
|
||
# 注意:这里必须是 mid+1,因为根据我们的比较方式,mid属于左边的序列
|
||
if nums[mid+1] <= target <= nums[right]:
|
||
left = mid + 1
|
||
else:
|
||
right = mid
|
||
|
||
return left if nums[left] == target else -1
|
||
```
|