246 lines
7.7 KiB
Markdown
246 lines
7.7 KiB
Markdown
## 题目地址
|
||
https://leetcode.com/problems/median-of-two-sorted-arrays/
|
||
|
||
## 题目描述
|
||
```
|
||
There are two sorted arrays nums1 and nums2 of size m and n respectively.
|
||
|
||
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
|
||
|
||
You may assume nums1 and nums2 cannot be both empty.
|
||
|
||
Example 1:
|
||
|
||
nums1 = [1, 3]
|
||
nums2 = [2]
|
||
|
||
The median is 2.0
|
||
Example 2:
|
||
|
||
nums1 = [1, 2]
|
||
nums2 = [3, 4]
|
||
|
||
The median is (2 + 3)/2 = 2.5
|
||
```
|
||
|
||
## 思路
|
||
首先了解一下Median的概念,一个数组中median就是把数组分成左右等分的中位数。
|
||
|
||
如下图:
|
||
![median](../assets/problems/4.median-of-two-sorted-array-1.jpg)
|
||
|
||
这道题,很容易想到暴力解法,时间复杂度和空间复杂度都是`O(m+n)`, 不符合题中给出`O(log(m+n))`时间复杂度的要求。
|
||
我们可以从简单的解法入手,试了一下,暴力解法也是可以被Leetcode Accept的. 分析中会给出两种解法,暴力求解和二分解法。
|
||
|
||
#### 解法一 - 暴力 (Brute Force)
|
||
暴力解主要是要merge两个排序的数组`(A,B)`成一个排序的数组。
|
||
|
||
用两个`pointer(i,j)`,`i` 从数组`A`起始位置开始,即`i=0`开始,`j` 从数组`B`起始位置, 即`j=0`开始.
|
||
一一比较 `A[i] 和 B[j]`,
|
||
1. 如果`A[i] <= B[j]`, 则把`A[i]` 放入新的数组中,i往后移一位,即 `i+1`.
|
||
2. 如果`A[i] > B[j]`, 则把`B[j]` 放入新的数组中,j往后移一位,即 `j+1`.
|
||
3. 重复步骤#1 和 #2,直到`i`移到`A`最后,或者`j`移到`B`最后。
|
||
4. 如果`j`移动到`B`数组最后,那么直接把剩下的所有`A`依次放入新的数组中.
|
||
5. 如果`i`移动到`A`数组最后,那么直接把剩下的所有`B`依次放入新的数组中.
|
||
|
||
Merge的过程如下图。
|
||
![merge two sorted array](../assets/problems/4.median-of-two-sorted-array-2.jpg)
|
||
|
||
|
||
*时间复杂度: `O(m+n) - m is length of A, n is length of B`*
|
||
|
||
*空间复杂度: `O(m+n)`*
|
||
|
||
#### 解法二 - 二分查找 (Binary Search)
|
||
由于题中给出的数组都是排好序的,在排好序的数组中查找很容易想到可以用二分查找(Binary Search), 这里对数组长度小的做二分,
|
||
保证数组A 和 数组B 做partition 之后
|
||
|
||
`len(Aleft)+len(Bleft)=(m+n+1)/2 - m是数组A的长度, n是数组B的长度`
|
||
|
||
对数组A的做partition的位置是区间`[0,m]`
|
||
|
||
如图:
|
||
![partition A,B](../assets/problems/4.median-of-two-sorted-array-3.png)
|
||
|
||
下图给出几种不同情况的例子(注意但左边或者右边没有元素的时候,左边用`INF_MIN`,右边用`INF_MAX`表示左右的元素:
|
||
![median examples](../assets/problems/4.median-of-two-sorted-array-5.png)
|
||
|
||
下图给出具体做的partition 解题的例子步骤,
|
||
![median partition example](../assets/problems/4.median-of-two-sorted-array-4.png)
|
||
|
||
*时间复杂度: `O(log(min(m, n)) - m is length of A, n is length of B`*
|
||
|
||
*空间复杂度: `O(1)` - 这里没有用额外的空间*
|
||
|
||
## 关键点分析
|
||
1. 暴力求解,在线性时间内merge两个排好序的数组成一个数组。
|
||
2. 二分查找,关键点在于
|
||
- 要partition两个排好序的数组成左右两等份,partition需要满足`len(Aleft)+len(Bleft)=(m+n+1)/2 - m是数组A的长度, n是数组B的长度`
|
||
|
||
- 并且partition后 A左边最大(`maxLeftA`), A右边最小(`minRightA`), B左边最大(`maxLeftB`), B右边最小(`minRightB`) 满足
|
||
`(maxLeftA <= minRightB && maxLeftB <= minRightA)`
|
||
|
||
有了这两个条件,那么median就在这四个数中,根据奇数或者是偶数,
|
||
```
|
||
奇数:
|
||
median = max(maxLeftA, maxLeftB)
|
||
偶数:
|
||
median = (max(maxLeftA, maxLeftB) + min(minRightA, minRightB)) / 2
|
||
```
|
||
|
||
## 代码(Java code)
|
||
*解法一 - 暴力解法(Brute force)*
|
||
```java
|
||
class MedianTwoSortedArrayBruteForce {
|
||
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
|
||
int[] newArr = mergeTwoSortedArray(nums1, nums2);
|
||
int n = newArr.length;
|
||
if (n % 2 == 0) {
|
||
// even
|
||
return (double) (newArr[n / 2] + newArr[n / 2 - 1]) / 2;
|
||
} else {
|
||
// odd
|
||
return (double) newArr[n / 2];
|
||
}
|
||
}
|
||
private int[] mergeTwoSortedArray(int[] nums1, int[] nums2) {
|
||
int m = nums1.length;
|
||
int n = nums2.length;
|
||
int[] res = new int[m + n];
|
||
int i = 0;
|
||
int j = 0;
|
||
int idx = 0;
|
||
while (i < m && j < n) {
|
||
if (nums1[i] <= nums2[j]) {
|
||
res[idx++] = nums1[i++];
|
||
} else {
|
||
res[idx++] = nums2[j++];
|
||
}
|
||
}
|
||
while (i < m) {
|
||
res[idx++] = nums1[i++];
|
||
}
|
||
while (j < n) {
|
||
res[idx++] = nums2[j++];
|
||
}
|
||
return res;
|
||
}
|
||
}
|
||
```
|
||
*解法二 - 二分查找(Binary Search)*
|
||
```java
|
||
class MedianSortedTwoArrayBinarySearch {
|
||
public static double findMedianSortedArraysBinarySearch(int[] nums1, int[] nums2) {
|
||
// do binary search for shorter length array, make sure time complexity log(min(m,n)).
|
||
if (nums1.length > nums2.length) {
|
||
return findMedianSortedArraysBinarySearch(nums2, nums1);
|
||
}
|
||
int m = nums1.length;
|
||
int n = nums2.length;
|
||
int lo = 0;
|
||
int hi = m;
|
||
while (lo <= hi) {
|
||
// partition A position i
|
||
int i = lo + (hi - lo) / 2;
|
||
// partition B position j
|
||
int j = (m + n + 1) / 2 - i;
|
||
|
||
int maxLeftA = i == 0 ? Integer.MIN_VALUE : nums1[i - 1];
|
||
int minRightA = i == m ? Integer.MAX_VALUE : nums1[i];
|
||
|
||
int maxLeftB = j == 0 ? Integer.MIN_VALUE : nums2[j - 1];
|
||
int minRightB = j == n ? Integer.MAX_VALUE : nums2[j];
|
||
|
||
if (maxLeftA <= minRightB && maxLeftB <= minRightA) {
|
||
// total length is even
|
||
if ((m + n) % 2 == 0) {
|
||
return (double) (Math.max(maxLeftA, maxLeftB) + Math.min(minRightA, minRightB)) / 2;
|
||
} else {
|
||
// total length is odd
|
||
return (double) Math.max(maxLeftA, maxLeftB);
|
||
}
|
||
} else if (maxLeftA > minRightB) {
|
||
// binary search left half
|
||
hi = i - 1;
|
||
} else {
|
||
// binary search right half
|
||
lo = i + 1;
|
||
}
|
||
}
|
||
return 0.0;
|
||
}
|
||
}
|
||
```
|
||
|
||
## 代码 (javascript code)
|
||
*解法一 - 暴力解法(Brute force)*
|
||
```js
|
||
/**
|
||
* @param {number[]} nums1
|
||
* @param {number[]} nums2
|
||
* @return {number}
|
||
*/
|
||
var findMedianSortedArrays = function(nums1, nums2) {
|
||
// 归并排序
|
||
const merged = []
|
||
let i = 0
|
||
let j = 0
|
||
while(i < nums1.length && j < nums2.length) {
|
||
if (nums1[i] < nums2[j]) {
|
||
merged.push(nums1[i++])
|
||
} else {
|
||
merged.push(nums2[j++])
|
||
}
|
||
}
|
||
while(i < nums1.length) {
|
||
merged.push(nums1[i++])
|
||
}
|
||
while(j < nums2.length) {
|
||
merged.push(nums2[j++])
|
||
}
|
||
|
||
const { length } = merged
|
||
return length % 2 === 1
|
||
? merged[Math.floor(length / 2)]
|
||
: (merged[length / 2] + merged[length / 2 - 1]) / 2
|
||
};
|
||
```
|
||
|
||
*解法二 - 二分查找(Binary Search)*
|
||
```js
|
||
/**
|
||
* 二分解法
|
||
* @param {number[]} nums1
|
||
* @param {number[]} nums2
|
||
* @return {number}
|
||
*/
|
||
var findMedianSortedArrays = function(nums1, nums2) {
|
||
// make sure to do binary search for shorten array
|
||
if (nums1.length > nums2.length) {
|
||
[nums1, nums2] = [nums2, nums1]
|
||
}
|
||
const m = nums1.length
|
||
const n = nums2.length
|
||
let low = 0
|
||
let high = m
|
||
while(low <= high) {
|
||
const i = low + Math.floor((high - low) / 2)
|
||
const j = Math.floor((m + n + 1) / 2) - i
|
||
|
||
const maxLeftA = i === 0 ? -Infinity : nums1[i-1]
|
||
const minRightA = i === m ? Infinity : nums1[i]
|
||
const maxLeftB = j === 0 ? -Infinity : nums2[j-1]
|
||
const minRightB = j === n ? Infinity : nums2[j]
|
||
|
||
if (maxLeftA <= minRightB && minRightA >= maxLeftB) {
|
||
return (m + n) % 2 === 1
|
||
? Math.max(maxLeftA, maxLeftB)
|
||
: (Math.max(maxLeftA, maxLeftB) + Math.min(minRightA, minRightB)) / 2
|
||
} else if (maxLeftA > minRightB) {
|
||
high = i - 1
|
||
} else {
|
||
low = low + 1
|
||
}
|
||
}
|
||
};
|
||
``` |