167 lines
4.6 KiB
Markdown
167 lines
4.6 KiB
Markdown
## Problem Link
|
||
|
||
https://leetcode.com/problems/subsets-ii/description/
|
||
|
||
## Description
|
||
```
|
||
Given a collection of integers that might contain duplicates, nums, return all possible subsets (the power set).
|
||
|
||
Note: The solution set must not contain duplicate subsets.
|
||
|
||
Example:
|
||
|
||
Input: [1,2,2]
|
||
Output:
|
||
[
|
||
[2],
|
||
[1],
|
||
[1,2,2],
|
||
[2,2],
|
||
[1,2],
|
||
[]
|
||
]
|
||
|
||
```
|
||
|
||
## Solution
|
||
|
||
Since this problem is seeking `Subset` not `Extreme Value`, dynamic programming is not an ideal solution. Other approaches should be taken into our consideration.
|
||
|
||
Actually, there is a general approach to solve problems similar to this one -- backtracking. Given a [Code Template](https://leetcode.com/problems/combination-sum/discuss/16502/A-general-approach-to-backtracking-questions-in-Java-(Subsets-Permutations-Combination-Sum-Palindrome-Partitioning)) here, it demonstrates how backtracking works with varieties of problems. Apart from current one, many problems can be solved by such a general approach. For more details, please check the `Related Problems` section below.
|
||
|
||
Given a picture as followed, let's start with problem-solving ideas of this general solution.
|
||
|
||
![backtrack](../assets/problems/backtrack.png)
|
||
|
||
See Code Template details below.
|
||
|
||
## Key Points
|
||
|
||
- Backtrack Approach
|
||
- Backtrack Code Template/ Formula
|
||
|
||
## Code
|
||
|
||
* Supported Language:JS,C++,Python3
|
||
|
||
JavaScript Code:
|
||
|
||
```js
|
||
|
||
|
||
/*
|
||
* @lc app=leetcode id=90 lang=javascript
|
||
*
|
||
* [90] Subsets II
|
||
*
|
||
* https://leetcode.com/problems/subsets-ii/description/
|
||
*
|
||
* algorithms
|
||
* Medium (41.53%)
|
||
* Total Accepted: 197.1K
|
||
* Total Submissions: 469.1K
|
||
* Testcase Example: '[1,2,2]'
|
||
*
|
||
* Given a collection of integers that might contain duplicates, nums, return
|
||
* all possible subsets (the power set).
|
||
*
|
||
* Note: The solution set must not contain duplicate subsets.
|
||
*
|
||
* Example:
|
||
*
|
||
*
|
||
* Input: [1,2,2]
|
||
* Output:
|
||
* [
|
||
* [2],
|
||
* [1],
|
||
* [1,2,2],
|
||
* [2,2],
|
||
* [1,2],
|
||
* []
|
||
* ]
|
||
*
|
||
*
|
||
*/
|
||
function backtrack(list, tempList, nums, start) {
|
||
list.push([...tempList]);
|
||
for(let i = start; i < nums.length; i++) {
|
||
//nums can be duplicated, which is different from Problem 78 - subsets
|
||
//So the situation should be taken into consideration
|
||
if (i > start && nums[i] === nums[i - 1]) continue;
|
||
tempList.push(nums[i]);
|
||
backtrack(list, tempList, nums, i + 1)
|
||
tempList.pop();
|
||
}
|
||
}
|
||
/**
|
||
* @param {number[]} nums
|
||
* @return {number[][]}
|
||
*/
|
||
var subsetsWithDup = function(nums) {
|
||
const list = [];
|
||
backtrack(list, [], nums.sort((a, b) => a - b), 0, [])
|
||
return list;
|
||
};
|
||
```
|
||
C++ Code:
|
||
|
||
```C++
|
||
class Solution {
|
||
private:
|
||
void subsetsWithDup(vector<int>& nums, size_t start, vector<int>& tmp, vector<vector<int>>& res) {
|
||
res.push_back(tmp);
|
||
for (auto i = start; i < nums.size(); ++i) {
|
||
if (i > start && nums[i] == nums[i - 1]) continue;
|
||
tmp.push_back(nums[i]);
|
||
subsetsWithDup(nums, i + 1, tmp, res);
|
||
tmp.pop_back();
|
||
}
|
||
}
|
||
public:
|
||
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
|
||
auto tmp = vector<int>();
|
||
auto res = vector<vector<int>>();
|
||
sort(nums.begin(), nums.end());
|
||
subsetsWithDup(nums, 0, tmp, res);
|
||
return res;
|
||
}
|
||
};
|
||
```
|
||
Python Code:
|
||
|
||
```Python
|
||
class Solution:
|
||
def subsetsWithDup(self, nums: List[int], sorted: bool=False) -> List[List[int]]:
|
||
"""Backtrack Approach: by sorting parameters first to avoid repeting sort later"""
|
||
if not nums:
|
||
return [[]]
|
||
elif len(nums) == 1:
|
||
return [[], nums]
|
||
else:
|
||
# Sorting first to filter duplicated numbers
|
||
# Note,this problem takes higher time complexity
|
||
# So, it could greatly improve time efficiency by adding one parameter to avoid repeting sort in following procedures
|
||
if not sorted:
|
||
nums.sort()
|
||
# Backtrack Approach
|
||
pre_lists = self.subsetsWithDup(nums[:-1], sorted=True)
|
||
all_lists = [i+[nums[-1]] for i in pre_lists] + pre_lists
|
||
# distinct elements
|
||
result = []
|
||
for i in all_lists:
|
||
if i not in result:
|
||
result.append(i)
|
||
return result
|
||
```
|
||
|
||
## Related Problems
|
||
|
||
- [39.combination-sum](./39.combination-sum.md)(chinese)
|
||
- [40.combination-sum-ii](./40.combination-sum-ii.md)(chinese)
|
||
- [46.permutations](./46.permutations.md)(chinese)
|
||
- [47.permutations-ii](./47.permutations-ii.md)(chinese)
|
||
- [78.subsets](./78.subsets-en.md)
|
||
- [113.path-sum-ii](./113.path-sum-ii.md)(chinese)
|
||
- [131.palindrome-partitioning](./131.palindrome-partitioning.md)(chinese)
|