2.9 KiB
2.9 KiB
题目地址
https://leetcode.com/problems/decode-ways/description/
题目描述
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given a non-empty string containing only digits, determine the total number of ways to decode it.
Example 1:
Input: "12"
Output: 2
Explanation: It could be decoded as "AB" (1 2) or "L" (12).
Example 2:
Input: "226"
Output: 3
Explanation: It could be decoded as "BZ" (2 26), "VF" (22 6), or "BBF" (2 2 6).
思路
这道题目和爬楼梯问题有异曲同工之妙。
这也是一道典型的动态规划题目。我们来思考:
- 对于一个数字来说[1,9]这九个数字能够被识别为一种编码方式
- 对于两个数字来说[10, 26]这几个数字能被识别为一种编码方式
我们考虑用dp[i]来切分子问题, 那么dp[i]表示的意思是当前字符串的以索引i结尾的子问题。 这样的话,我们最后只需要取dp[s.length] 就可以解决问题了。
关于递归公式,让我们先局部后整体
。对于局部,我们遍历到一个元素的时候,
我们有两种方式来组成编码方式,第一种是这个元素本身(需要自身是[1,9]),
第二种是它和前一个元素组成[10, 26]。 用伪代码来表示的话就是:
dp[i] = 以自身去编码(一位) + 以前面的元素和自身去编码(两位)
.这显然是完备的,
这样我们通过层层推导就可以得到结果。
关键点解析
- 爬楼梯问题(我把这种题目统称为爬楼梯问题)
代码
/*
* @lc app=leetcode id=91 lang=javascript
*
* [91] Decode Ways
*
* https://leetcode.com/problems/decode-ways/description/
*
* algorithms
* Medium (21.93%)
* Total Accepted: 254.4K
* Total Submissions: 1.1M
* Testcase Example: '"12"'
*
* A message containing letters from A-Z is being encoded to numbers using the
* following mapping:
*
*
* 'A' -> 1
* 'B' -> 2
* ...
* 'Z' -> 26
*
*
* Given a non-empty string containing only digits, determine the total number
* of ways to decode it.
*
* Example 1:
*
*
* Input: "12"
* Output: 2
* Explanation: It could be decoded as "AB" (1 2) or "L" (12).
*
*
* Example 2:
*
*
* Input: "226"
* Output: 3
* Explanation: It could be decoded as "BZ" (2 26), "VF" (22 6), or "BBF" (2 2
* 6).
*
*/
/**
* @param {string} s
* @return {number}
*/
var numDecodings = function(s) {
if (s == null || s.length == 0) {
return 0;
}
const dp = Array(s.length + 1).fill(0);
dp[0] = 1;
dp[1] = s[0] !== "0" ? 1 : 0;
for (let i = 2; i < s.length + 1; i++) {
const one = +s.slice(i - 1, i);
const two = +s.slice(i - 2, i);
if (two >= 10 && two <= 26) {
dp[i] = dp[i - 2];
}
if (one >= 1 && one <= 9) {
dp[i] += dp[i - 1];
}
}
return dp[dp.length - 1];
};
扩展
如果编码的范围不再是1-26,而是三位的话怎么办?