271 lines
6.5 KiB
Markdown
271 lines
6.5 KiB
Markdown
## 题目地址
|
||
https://leetcode.com/problems/binary-tree-inorder-traversal/description/
|
||
|
||
## 题目描述
|
||
```
|
||
Given a binary tree, return the inorder traversal of its nodes' values.
|
||
|
||
Example:
|
||
|
||
Input: [1,null,2,3]
|
||
1
|
||
\
|
||
2
|
||
/
|
||
3
|
||
|
||
Output: [1,3,2]
|
||
Follow up: Recursive solution is trivial, could you do it iteratively?
|
||
```
|
||
## 思路
|
||
|
||
递归的方式相对简单,非递归的方式借助栈这种数据结构实现起来会相对轻松。
|
||
|
||
如果采用非递归,可以用栈(Stack)的思路来处理问题。
|
||
|
||
中序遍历的顺序为左-根-右,具体算法为:
|
||
|
||
- 从根节点开始,先将根节点压入栈
|
||
|
||
- 然后再将其所有左子结点压入栈,取出栈顶节点,保存节点值
|
||
|
||
- 再将当前指针移到其右子节点上,若存在右子节点,则在下次循环时又可将其所有左子结点压入栈中, 重复上步骤
|
||
|
||
![94.binary-tree-inorder-traversal](../assets/94.binary-tree-inorder-traversal.gif)
|
||
|
||
(图片来自: https://github.com/MisterBooo/LeetCodeAnimation)
|
||
## 关键点解析
|
||
|
||
- 二叉树的基本操作(遍历)
|
||
> 不同的遍历算法差异还是蛮大的
|
||
- 如果非递归的话利用栈来简化操作
|
||
|
||
- 如果数据规模不大的话,建议使用递归
|
||
|
||
- 递归的问题需要注意两点,一个是终止条件,一个如何缩小规模
|
||
|
||
1. 终止条件,自然是当前这个元素是null(链表也是一样)
|
||
|
||
2. 由于二叉树本身就是一个递归结构, 每次处理一个子树其实就是缩小了规模,
|
||
难点在于如何合并结果,这里的合并结果其实就是`left.concat(mid).concat(right)`,
|
||
mid是一个具体的节点,left和right`递归求出即可`
|
||
|
||
|
||
## 代码
|
||
|
||
* 语言支持:JS,C++,Python3, Java
|
||
|
||
JavaScript Code:
|
||
|
||
```js
|
||
/*
|
||
* @lc app=leetcode id=94 lang=javascript
|
||
*
|
||
* [94] Binary Tree Inorder Traversal
|
||
*
|
||
* https://leetcode.com/problems/binary-tree-inorder-traversal/description/
|
||
*
|
||
* algorithms
|
||
* Medium (55.22%)
|
||
* Total Accepted: 422.4K
|
||
* Total Submissions: 762.1K
|
||
* Testcase Example: '[1,null,2,3]'
|
||
*
|
||
* Given a binary tree, return the inorder traversal of its nodes' values.
|
||
*
|
||
* Example:
|
||
*
|
||
*
|
||
* Input: [1,null,2,3]
|
||
* 1
|
||
* \
|
||
* 2
|
||
* /
|
||
* 3
|
||
*
|
||
* Output: [1,3,2]
|
||
*
|
||
* Follow up: Recursive solution is trivial, could you do it iteratively?
|
||
*
|
||
*/
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* function TreeNode(val) {
|
||
* this.val = val;
|
||
* this.left = this.right = null;
|
||
* }
|
||
*/
|
||
/**
|
||
* @param {TreeNode} root
|
||
* @return {number[]}
|
||
*/
|
||
var inorderTraversal = function(root) {
|
||
// 1. Recursive solution
|
||
// if (!root) return [];
|
||
// const left = root.left ? inorderTraversal(root.left) : [];
|
||
// const right = root.right ? inorderTraversal(root.right) : [];
|
||
// return left.concat([root.val]).concat(right);
|
||
|
||
// 2. iterative solutuon
|
||
if (!root) return [];
|
||
const stack = [root];
|
||
const ret = [];
|
||
let left = root.left;
|
||
|
||
let item = null; // stack 中弹出的当前项
|
||
|
||
while(left) {
|
||
stack.push(left);
|
||
left = left.left;
|
||
}
|
||
|
||
while(item = stack.pop()) {
|
||
ret.push(item.val);
|
||
let t = item.right;
|
||
|
||
while(t) {
|
||
stack.push(t);
|
||
t = t.left;
|
||
}
|
||
}
|
||
|
||
return ret;
|
||
|
||
};
|
||
|
||
```
|
||
C++ Code:
|
||
|
||
```c++
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* struct TreeNode {
|
||
* int val;
|
||
* TreeNode *left;
|
||
* TreeNode *right;
|
||
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
|
||
* };
|
||
*/
|
||
class Solution {
|
||
public:
|
||
vector<int> inorderTraversal(TreeNode* root) {
|
||
vector<TreeNode*> s;
|
||
vector<int> v;
|
||
while (root != NULL || !s.empty()) {
|
||
for (; root != NULL; root = root->left)
|
||
s.push_back(root);
|
||
v.push_back(s.back()->val);
|
||
root = s.back()->right;
|
||
s.pop_back();
|
||
}
|
||
return v;
|
||
}
|
||
};
|
||
```
|
||
Python Code:
|
||
```Python
|
||
# Definition for a binary tree node.
|
||
# class TreeNode:
|
||
# def __init__(self, x):
|
||
# self.val = x
|
||
# self.left = None
|
||
# self.right = None
|
||
|
||
class Solution:
|
||
def inorderTraversal(self, root: TreeNode) -> List[int]:
|
||
"""
|
||
1. 递归法可以一行代码完成,无需讨论;
|
||
2. 迭代法一般需要通过一个栈保存节点顺序,我们这里直接使用列表
|
||
- 首先,我要按照中序遍历的顺序存入栈,这边用的逆序,方便从尾部开始处理
|
||
- 在存入栈时加入一个是否需要深化的参数
|
||
- 在回头取值时,这个参数应该是否,即直接取值
|
||
- 简单调整顺序,即可实现前序和后序遍历
|
||
"""
|
||
# 递归法
|
||
# if root is None:
|
||
# return []
|
||
# return self.inorderTraversal(root.left)\
|
||
# + [root.val]\
|
||
# + self.inorderTraversal(root.right)
|
||
# 迭代法
|
||
result = []
|
||
stack = [(1, root)]
|
||
while stack:
|
||
go_deeper, node = stack.pop()
|
||
if node is None:
|
||
continue
|
||
if go_deeper:
|
||
# 左右节点还需继续深化,并且入栈是先右后左
|
||
stack.append((1, node.right))
|
||
# 节点自身已遍历,回头可以直接取值
|
||
stack.append((0, node))
|
||
stack.append((1, node.left))
|
||
else:
|
||
result.append(node.val)
|
||
return result
|
||
```
|
||
|
||
Java Code:
|
||
|
||
- recursion
|
||
|
||
```java
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* public class TreeNode {
|
||
* int val;
|
||
* TreeNode left;
|
||
* TreeNode right;
|
||
* TreeNode(int x) { val = x; }
|
||
* }
|
||
*/
|
||
class Solution {
|
||
List<Integer> res = new LinkedList<>();
|
||
public List<Integer> inorderTraversal(TreeNode root) {
|
||
inorder(root);
|
||
return res;
|
||
}
|
||
|
||
public void inorder (TreeNode root) {
|
||
if (root == null) return;
|
||
|
||
inorder(root.left);
|
||
|
||
res.add(root.val);
|
||
|
||
inorder(root.right);
|
||
}
|
||
}
|
||
```
|
||
|
||
- iteration
|
||
|
||
```java
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* public class TreeNode {
|
||
* int val;
|
||
* TreeNode left;
|
||
* TreeNode right;
|
||
* TreeNode(int x) { val = x; }
|
||
* }
|
||
*/
|
||
class Solution {
|
||
public List<Integer> inorderTraversal(TreeNode root) {
|
||
List<Integer> res = new ArrayList<> ();
|
||
Stack<TreeNode> stack = new Stack<> ();
|
||
|
||
while (root != null || !stack.isEmpty()) {
|
||
while (root != null) {
|
||
stack.push(root);
|
||
root = root.left;
|
||
}
|
||
root = stack.pop();
|
||
res.add(root.val);
|
||
root = root.right;
|
||
}
|
||
return res;
|
||
}
|
||
}
|
||
```
|