leecode/thinkings/union-find.md
2020-05-22 18:17:19 +08:00

5.0 KiB
Raw Permalink Blame History

并查集

关于并查集的题目不少,官方给的数据是 30 道(截止 2020-02-20但是有一些题目虽然官方没有贴并查集标签,但是使用并查集来说确非常简单。这类题目如果掌握模板,那么刷这种题会非常快,并且犯错的概率会大大降低,这就是模板的好处。

我这里总结了几道并查集的题目:

看完这里的内容,建议拿上面的题目练下手,检测一下学习成果。

概述

并查集是一种树型的数据结构用于处理一些不交集Disjoint Sets的合并及查询问题。有一个联合-查找算法Union-find Algorithm定义了两个用于此数据结构的操作

  • Find确定元素属于哪一个子集。它可以被用来确定两个元素是否属于同一子集。
  • Union将两个子集合并成同一个集合。

由于支持这两种操作,一个不相交集也常被称为联合-查找数据结构Union-find Data Structure或合并-查找集合Merge-find Set。为了更加精确的定义这些方法需要定义如何表示集合。一种常用的策略是为每个集合选定一个固定的元素称为代表以表示整个集合。接着Find(x) 返回 x 所属集合的代表,而 Union 使用两个集合的代表作为参数。

形象解释

比如有两个司令。 司令下有若干军长,军长下有若干师长。。。

我们如何判断某两个师长是否属于同一个司令呢(连通性)?

很简单,我们顺着师长,往上找,找到司令。 如果两个师长找到的是同一个司令,那么就属于同一个司令。我们用 parent[x] = y 表示 x 的 parent 是 y通过不断沿着搜索 parent 搜索找到 root然后比较 root 是否相同即可得出结论。

以上过程涉及了两个基本操作findconnnected。 并查集除了这两个基本操作,还有一个是union。即将两个集合合并为同一个。

如图有两个司令:

我们将其合并为一个联通域,最简单的方式就是直接将其中一个司令指向另外一个即可:

以上就是三个核心 API findconnnectedunion 的形象化解释,下面我们来看下代码实现。

核心 API

find

def find(self, x):
    while x != self.parent[x]:
        x = self.parent[x]
    return x

connected

def connected(self, p, q):
    return self.find(p) == self.find(q)

union

def union(self, p, q):
    if self.connected(p, q): return
    self.parent[self.find(p)] = self.find(q)

完整代码模板

class UF:
    parent = {}
    cnt = 0
    def __init__(self, M):
        # 初始化 parent 和 cnt

    def find(self, x):
        while x != self.parent[x]:
            x = self.parent[x]
        return x
    def union(self, p, q):
        if self.connected(p, q): return
        self.parent[self.find(p)] = self.find(q)
        self.cnt -= 1
    def connected(self, p, q):
        return self.find(p) == self.find(q)

带路径压缩的代码模板

class UF:
    parent = {}
    size = {}
    cnt = 0
    def __init__(self, M):
        # 初始化 parentsize 和 cnt

    def find(self, x):
        while x != self.parent[x]:
            x = self.parent[x]
            # 路径压缩
            self.parent[x] = self.parent[self.parent[x]];
        return x
    def union(self, p, q):
        if self.connected(p, q): return
        # 小的树挂到大的树上, 使树尽量平衡
        leader_p = self.find(p)
        leader_q = self.find(q)
        if self.size[leader_p] < self.size[leader_q]:
            self.parent[leader_p] = leader_q
        else:
            self.parent[leader_q] = leader_p
        self.cnt -= 1
    def connected(self, p, q):
        return self.find(p) == self.find(q)

上面是递归的方式进行路径压缩,写起来比较简单。但是有栈溢出的风险。 接下来我们看下迭代的写法:

class UF:
    parent = {}
    def __init__(self, equations):
        # 做一些初始化操作

    def find(self, x):
        # 根节点
        r = x
        while r != parent[r]:
            r = parent[r]
        k = x
        while k != r:
            # 暂存parent[k]的父节点
            j = parent[k]
            parent[k] = r
            k = j
        return r
    def union(self, p, q):
        if self.connected(p, q): return
        self.parent[self.find(p)] = self.find(q)
    def connected(self, p, q):
        return self.find(p) == self.find(q)