126 lines
3.9 KiB
Markdown
126 lines
3.9 KiB
Markdown
## 题目地址
|
||
https://leetcode.com/problems/container-with-most-water/description/
|
||
|
||
## 题目描述
|
||
```
|
||
Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
|
||
|
||
Note: You may not slant the container and n is at least 2.
|
||
```
|
||
|
||
![11.container-with-most-water-question](../assets/problems/11.container-with-most-water-question.jpg)
|
||
```
|
||
|
||
The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
|
||
|
||
|
||
|
||
Example:
|
||
|
||
Input: [1,8,6,2,5,4,8,3,7]
|
||
Output: 49
|
||
```
|
||
|
||
## 思路
|
||
符合直觉的解法是,我们可以对两两进行求解,计算可以承载的水量。 然后不断更新最大值,最后返回最大值即可。
|
||
这种解法,需要两层循环,时间复杂度是O(n^2)
|
||
|
||
eg:
|
||
|
||
```js
|
||
// 这个解法比较暴力,效率比较低
|
||
// 时间复杂度是O(n^2)
|
||
let max = 0;
|
||
for(let i = 0; i < height.length; i++) {
|
||
for(let j = i + 1; j < height.length; j++) {
|
||
const currentArea = Math.abs(i - j) * Math.min(height[i], height[j]);
|
||
if (currentArea > max) {
|
||
max = currentArea;
|
||
}
|
||
}
|
||
}
|
||
return max;
|
||
|
||
```
|
||
|
||
> 这种符合直觉的解法有点像冒泡排序, 大家可以稍微类比一下
|
||
|
||
那么有没有更加优的解法呢?我们来换个角度来思考这个问题,上述的解法是通过两两组合,这无疑是完备的,
|
||
那我门是否可以先计算长度为n的面积,然后计算长度为n-1的面积,... 计算长度为1的面积。 这样去不断更新最大值呢?
|
||
很显然这种解法也是完备的,但是似乎时间复杂度还是O(n ^ 2), 不要着急。
|
||
|
||
考虑一下,如果我们计算n-1长度的面积的时候,是直接直接排除一半的结果的。
|
||
|
||
如图:
|
||
|
||
![11.container-with-most-water](../assets/problems/11.container-with-most-water.png)
|
||
|
||
|
||
比如我们计算n面积的时候,假如左侧的线段高度比右侧的高度低,那么我们通过左移右指针来将长度缩短为n-1的做法是没有意义的,
|
||
因为`新的形成的面积变成了(n-1) * heightOfLeft 这个面积一定比刚才的长度为n的面积nn * heightOfLeft 小`
|
||
|
||
也就是说最大面积`一定是当前的面积或者通过移动短的线段得到`。
|
||
## 关键点解析
|
||
|
||
- 双指针优化时间复杂度
|
||
|
||
|
||
## 代码
|
||
* 语言支持:JS,C++
|
||
|
||
JavaScript Code:
|
||
|
||
```js
|
||
/**
|
||
* @param {number[]} height
|
||
* @return {number}
|
||
*/
|
||
var maxArea = function(height) {
|
||
if (!height || height.length <= 1) return 0;
|
||
|
||
let leftPos = 0;
|
||
let rightPos = height.length - 1;
|
||
let max = 0;
|
||
while(leftPos < rightPos) {
|
||
|
||
const currentArea = Math.abs(leftPos - rightPos) * Math.min(height[leftPos] , height[rightPos]);
|
||
if (currentArea > max) {
|
||
max = currentArea;
|
||
}
|
||
// 更新小的
|
||
if (height[leftPos] < height[rightPos]) {
|
||
leftPos++;
|
||
} else { // 如果相等就随便了
|
||
rightPos--;
|
||
}
|
||
}
|
||
|
||
return max;
|
||
};
|
||
```
|
||
C++ Code:
|
||
```C++
|
||
class Solution {
|
||
public:
|
||
int maxArea(vector<int>& height) {
|
||
auto ret = 0ul, leftPos = 0ul, rightPos = height.size() - 1;
|
||
while( leftPos < rightPos)
|
||
{
|
||
ret = std::max(ret, std::min(height[leftPos], height[rightPos]) * (rightPos - leftPos));
|
||
if (height[leftPos] < height[rightPos]) ++leftPos;
|
||
else --rightPos;
|
||
}
|
||
return ret;
|
||
}
|
||
};
|
||
```
|
||
|
||
***复杂度分析***
|
||
- 时间复杂度:$O(N)$
|
||
- 空间复杂度:$O(1)$
|
||
|
||
|
||
大家也可以关注我的公众号《脑洞前端》获取更多更新鲜的LeetCode题解
|
||
|
||
![](https://pic.leetcode-cn.com/89ef69abbf02a2957838499a96ce3fbb26830aae52e3ab90392e328c2670cddc-file_1581478989502)
|