136 lines
3.3 KiB
Markdown
136 lines
3.3 KiB
Markdown
## 题目地址
|
||
https://leetcode.com/problems/binary-tree-postorder-traversal/description/
|
||
|
||
## 题目描述
|
||
|
||
```
|
||
Given a binary tree, return the postorder traversal of its nodes' values.
|
||
|
||
For example:
|
||
Given binary tree {1,#,2,3},
|
||
|
||
1
|
||
\
|
||
2
|
||
/
|
||
3
|
||
|
||
|
||
return [3,2,1].
|
||
|
||
Note: Recursive solution is trivial, could you do it iteratively?
|
||
|
||
```
|
||
|
||
## 思路
|
||
|
||
相比于前序遍历,后续遍历思维上难度要大些,前序遍历是通过一个stack,首先压入父亲结点,然后弹出父亲结点,并输出它的value,之后压人其右儿子,左儿子即可。
|
||
|
||
然而后序遍历结点的访问顺序是:左儿子 -> 右儿子 -> 自己。那么一个结点需要两种情况下才能够输出:
|
||
第一,它已经是叶子结点;
|
||
第二,它不是叶子结点,但是它的儿子已经输出过。
|
||
|
||
那么基于此我们只需要记录一下当前输出的结点即可。对于一个新的结点,如果它不是叶子结点,儿子也没有访问,那么就需要将它的右儿子,左儿子压入。
|
||
如果它满足输出条件,则输出它,并记录下当前输出结点。输出在stack为空时结束。
|
||
|
||
|
||
## 关键点解析
|
||
|
||
- 二叉树的基本操作(遍历)
|
||
> 不同的遍历算法差异还是蛮大的
|
||
- 如果非递归的话利用栈来简化操作
|
||
|
||
- 如果数据规模不大的话,建议使用递归
|
||
|
||
- 递归的问题需要注意两点,一个是终止条件,一个如何缩小规模
|
||
|
||
1. 终止条件,自然是当前这个元素是null(链表也是一样)
|
||
|
||
2. 由于二叉树本身就是一个递归结构, 每次处理一个子树其实就是缩小了规模,
|
||
难点在于如何合并结果,这里的合并结果其实就是`left.concat(right).concat(mid)`,
|
||
mid是一个具体的节点,left和right`递归求出即可`
|
||
|
||
|
||
## 代码
|
||
|
||
```js
|
||
/*
|
||
* @lc app=leetcode id=145 lang=javascript
|
||
*
|
||
* [145] Binary Tree Postorder Traversal
|
||
*
|
||
* https://leetcode.com/problems/binary-tree-postorder-traversal/description/
|
||
*
|
||
* algorithms
|
||
* Hard (47.06%)
|
||
* Total Accepted: 242.6K
|
||
* Total Submissions: 512.8K
|
||
* Testcase Example: '[1,null,2,3]'
|
||
*
|
||
* Given a binary tree, return the postorder traversal of its nodes' values.
|
||
*
|
||
* Example:
|
||
*
|
||
*
|
||
* Input: [1,null,2,3]
|
||
* 1
|
||
* \
|
||
* 2
|
||
* /
|
||
* 3
|
||
*
|
||
* Output: [3,2,1]
|
||
*
|
||
*
|
||
* Follow up: Recursive solution is trivial, could you do it iteratively?
|
||
*
|
||
*/
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* function TreeNode(val) {
|
||
* this.val = val;
|
||
* this.left = this.right = null;
|
||
* }
|
||
*/
|
||
/**
|
||
* @param {TreeNode} root
|
||
* @return {number[]}
|
||
*/
|
||
var postorderTraversal = function(root) {
|
||
// 1. Recursive solution
|
||
|
||
// if (!root) return [];
|
||
|
||
// return postorderTraversal(root.left).concat(postorderTraversal(root.right)).concat(root.val);
|
||
|
||
// 2. iterative solutuon
|
||
|
||
if (!root) return [];
|
||
const ret = [];
|
||
const stack = [root];
|
||
let p = root; // 标识元素,用来判断节点是否应该出栈
|
||
|
||
while (stack.length > 0) {
|
||
const top = stack[stack.length - 1];
|
||
if (
|
||
top.left === p ||
|
||
top.right === p || // 子节点已经遍历过了
|
||
(top.left === null && top.right === null) // 叶子元素
|
||
) {
|
||
p = stack.pop();
|
||
ret.push(p.val);
|
||
} else {
|
||
if (top.right) {
|
||
stack.push(top.right);
|
||
}
|
||
if (top.left) {
|
||
stack.push(top.left);
|
||
}
|
||
}
|
||
}
|
||
|
||
return ret;
|
||
};
|
||
|
||
```
|