leecode/problems/145.binary-tree-postorder-traversal.md
2020-05-22 18:17:19 +08:00

136 lines
3.3 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## 题目地址
https://leetcode.com/problems/binary-tree-postorder-traversal/description/
## 题目描述
```
Given a binary tree, return the postorder traversal of its nodes' values.
For example:
Given binary tree {1,#,2,3},
1
\
2
/
3
return [3,2,1].
Note: Recursive solution is trivial, could you do it iteratively?
```
## 思路
相比于前序遍历后续遍历思维上难度要大些前序遍历是通过一个stack首先压入父亲结点然后弹出父亲结点并输出它的value之后压人其右儿子左儿子即可。
然而后序遍历结点的访问顺序是:左儿子 -> 右儿子 -> 自己。那么一个结点需要两种情况下才能够输出:
第一,它已经是叶子结点;
第二,它不是叶子结点,但是它的儿子已经输出过。
那么基于此我们只需要记录一下当前输出的结点即可。对于一个新的结点,如果它不是叶子结点,儿子也没有访问,那么就需要将它的右儿子,左儿子压入。
如果它满足输出条件则输出它并记录下当前输出结点。输出在stack为空时结束。
## 关键点解析
- 二叉树的基本操作(遍历)
> 不同的遍历算法差异还是蛮大的
- 如果非递归的话利用栈来简化操作
- 如果数据规模不大的话,建议使用递归
- 递归的问题需要注意两点,一个是终止条件,一个如何缩小规模
1. 终止条件自然是当前这个元素是null链表也是一样
2. 由于二叉树本身就是一个递归结构, 每次处理一个子树其实就是缩小了规模,
难点在于如何合并结果,这里的合并结果其实就是`left.concat(right).concat(mid)`,
mid是一个具体的节点left和right`递归求出即可`
## 代码
```js
/*
* @lc app=leetcode id=145 lang=javascript
*
* [145] Binary Tree Postorder Traversal
*
* https://leetcode.com/problems/binary-tree-postorder-traversal/description/
*
* algorithms
* Hard (47.06%)
* Total Accepted: 242.6K
* Total Submissions: 512.8K
* Testcase Example: '[1,null,2,3]'
*
* Given a binary tree, return the postorder traversal of its nodes' values.
*
* Example:
*
*
* Input: [1,null,2,3]
* 1
* \
* 2
* /
* 3
*
* Output: [3,2,1]
*
*
* Follow up: Recursive solution is trivial, could you do it iteratively?
*
*/
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var postorderTraversal = function(root) {
// 1. Recursive solution
// if (!root) return [];
// return postorderTraversal(root.left).concat(postorderTraversal(root.right)).concat(root.val);
// 2. iterative solutuon
if (!root) return [];
const ret = [];
const stack = [root];
let p = root; // 标识元素,用来判断节点是否应该出栈
while (stack.length > 0) {
const top = stack[stack.length - 1];
if (
top.left === p ||
top.right === p || // 子节点已经遍历过了
(top.left === null && top.right === null) // 叶子元素
) {
p = stack.pop();
ret.push(p.val);
} else {
if (top.right) {
stack.push(top.right);
}
if (top.left) {
stack.push(top.left);
}
}
}
return ret;
};
```