TheAlgorithms-C-Plus-Plus/math/miller_rabin.cpp

187 lines
5.7 KiB
C++
Raw Permalink Normal View History

/**
* Copyright 2020 @author tjgurwara99
* @file
*
* A basic implementation of Miller-Rabin primality test.
*/
#include <cassert>
#include <iostream>
#include <random>
#include <vector>
/**
* Function to give a binary representation of a number in reverse order
* @param num integer number that we want to convert
* @return result vector of the number input in reverse binary
*/
template <typename T>
std::vector<T> reverse_binary(T num) {
std::vector<T> result;
T temp = num;
while (temp > 0) {
result.push_back(temp % 2);
temp = temp / 2;
}
return result;
}
/**
* Function for modular exponentiation.
* This function is an efficient modular exponentiation function.
* It can be used with any big integer library such as Boost multiprecision
* to give result any modular exponentiation problem relatively quickly.
* @param base number being raised to a power as integer
* @param rev_binary_exponent reverse binary of the power the base is being
* raised to
* @param mod modulo
* @return r the modular exponentiation of \f$a^{n} \equiv r \mod{m}\f$ where
* \f$n\f$ is the base 10 representation of rev_binary_exponent and \f$m = mod
* \f$ parameter.
*/
template <typename T>
T modular_exponentiation(T base, const std::vector<T> &rev_binary_exponent,
T mod) {
if (mod == 1)
return 0;
T b = 1;
if (rev_binary_exponent.size() == 0)
return b;
T A = base;
if (rev_binary_exponent[0] == 1)
b = base;
for (typename std::vector<T>::const_iterator it =
rev_binary_exponent.cbegin() + 1;
it != rev_binary_exponent.cend(); ++it) {
A = A * A % mod;
if (*it == 1)
b = A * b % mod;
}
return b;
}
/** Function for testing the conditions that are satisfied when a number is
* prime.
* @param d number such that \f$d \cdot 2^r = n - 1\f$ where \f$n = num\f$
* parameter and \f$r \geq 1\f$
* @param num number being tested for primality.
* @return 'false' if n is composite
* @return 'true' if n is (probably) prime.
*/
template <typename T>
bool miller_test(T d, T num) {
// random number seed
std::random_device rd_seed;
// random number generator
std::mt19937 gen(rd_seed());
// Uniformly distributed range [2, num - 2] for random numbers
std::uniform_int_distribution<> distribution(2, num - 2);
// Random number generated in the range [2, num -2].
T random = distribution(gen);
// vector for reverse binary of the power
std::vector<T> power = reverse_binary(d);
// x = random ^ d % num
T x = modular_exponentiation(random, power, num);
// miller conditions
if (x == 1 || x == num - 1) {
return true;
}
while (d != num - 1) {
x = (x * x) % num;
d *= 2;
if (x == 1) {
return false;
}
if (x == num - 1) {
return true;
}
}
return false;
}
/**
* Function that test (probabilistically) whether a given number is a prime
* based on the Miller-Rabin Primality Test.
* @param num number to be tested for primality.
* @param repeats number of repetitions for the test to increase probability of
* correct result.
* @return 'false' if num is composite
* @return 'true' if num is (probably) prime
*
* \detail
* First we check whether the num input is less than 4, if so we can determine
* whether this is a prime or composite by checking for 2 and 3.
* Next we check whether this num is odd (as all primes greater than 2 are odd).
* Next we write our num in the following format \f$num = 2^r \cdot d + 1\f$.
* After finding r and d for our input num, we use for loop repeat number of
* times inside which we check the miller conditions using the function
* miller_test. If miller_test returns false then the number is composite After
* the loop finishes completely without issuing a false return call, we can
* conclude that this number is probably prime.
*/
template <typename T>
bool miller_rabin_primality_test(T num, T repeats) {
if (num <= 4) {
// If num == 2 or num == 3 then prime
if (num == 2 || num == 3) {
return true;
} else {
return false;
}
}
// If num is even then not prime
if (num % 2 == 0) {
return false;
}
// Finding d and r in num = 2^r * d + 1
T d = num - 1, r = 0;
while (d % 2 == 0) {
d = d / 2;
r++;
}
for (T i = 0; i < repeats; ++i) {
if (!miller_test(d, num)) {
return false;
}
}
return true;
}
/**
* Functions for testing the miller_rabin_primality_test() function with some
* assert statements.
*/
void tests() {
// First test on 2
assert(((void)"2 is prime but function says otherwise.\n",
miller_rabin_primality_test(2, 1) == true));
std::cout << "First test passes." << std::endl;
// Second test on 5
assert(((void)"5 should be prime but the function says otherwise.\n",
miller_rabin_primality_test(5, 3) == true));
std::cout << "Second test passes." << std::endl;
// Third test on 23
assert(((void)"23 should be prime but the function says otherwise.\n",
miller_rabin_primality_test(23, 3) == true));
std::cout << "Third test passes." << std::endl;
// Fourth test on 16
assert(((void)"16 is not a prime but the function says otherwise.\n",
miller_rabin_primality_test(16, 3) == false));
std::cout << "Fourth test passes." << std::endl;
// Fifth test on 27
assert(((void)"27 is not a prime but the function says otherwise.\n",
miller_rabin_primality_test(27, 3) == false));
std::cout << "Fifth test passes." << std::endl;
}
/**
* Main function
*/
int main() {
tests();
return 0;
}