mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
215 lines
6.5 KiB
C++
215 lines
6.5 KiB
C++
|
/**
|
||
|
* \file
|
||
|
* \authors [Krishna Vedala](https://github.com/kvedala)
|
||
|
* \brief Solve a multivariable first order [ordinary differential equation
|
||
|
* (ODEs)](https://en.wikipedia.org/wiki/Ordinary_differential_equation) using
|
||
|
* [midpoint Euler
|
||
|
* method](https://en.wikipedia.org/wiki/Midpoint_method)
|
||
|
*
|
||
|
* \details
|
||
|
* The ODE being solved is:
|
||
|
* \f{eqnarray*}{
|
||
|
* \dot{u} &=& v\\
|
||
|
* \dot{v} &=& -\omega^2 u\\
|
||
|
* \omega &=& 1\\
|
||
|
* [x_0, u_0, v_0] &=& [0,1,0]\qquad\ldots\text{(initial values)}
|
||
|
* \f}
|
||
|
* The exact solution for the above problem is:
|
||
|
* \f{eqnarray*}{
|
||
|
* u(x) &=& \cos(x)\\
|
||
|
* v(x) &=& -\sin(x)\\
|
||
|
* \f}
|
||
|
* The computation results are stored to a text file `midpoint_euler.csv` and
|
||
|
* the exact soltuion results in `exact.csv` for comparison. <img
|
||
|
* src="https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/numerical_methods/ode_midpoint_euler.svg"
|
||
|
* alt="Implementation solution"/>
|
||
|
*
|
||
|
* To implement [Van der Pol
|
||
|
* oscillator](https://en.wikipedia.org/wiki/Van_der_Pol_oscillator), change the
|
||
|
* ::problem function to:
|
||
|
* ```cpp
|
||
|
* const double mu = 2.0;
|
||
|
* dy[0] = y[1];
|
||
|
* dy[1] = mu * (1.f - y[0] * y[0]) * y[1] - y[0];
|
||
|
* ```
|
||
|
* \see ode_forward_euler.cpp, ode_semi_implicit_euler.cpp
|
||
|
*/
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <ctime>
|
||
|
#include <fstream>
|
||
|
#include <iostream>
|
||
|
#include <valarray>
|
||
|
|
||
|
/**
|
||
|
* @brief Problem statement for a system with first-order differential
|
||
|
* equations. Updates the system differential variables.
|
||
|
* \note This function can be updated to and ode of any order.
|
||
|
*
|
||
|
* @param[in] x independent variable(s)
|
||
|
* @param[in,out] y dependent variable(s)
|
||
|
* @param[in,out] dy first-derivative of dependent variable(s)
|
||
|
*/
|
||
|
void problem(const double &x, std::valarray<double> *y,
|
||
|
std::valarray<double> *dy) {
|
||
|
const double omega = 1.F; // some const for the problem
|
||
|
dy[0][0] = y[0][1]; // x dot
|
||
|
dy[0][1] = -omega * omega * y[0][0]; // y dot
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Exact solution of the problem. Used for solution comparison.
|
||
|
*
|
||
|
* @param[in] x independent variable
|
||
|
* @param[in,out] y dependent variable
|
||
|
*/
|
||
|
void exact_solution(const double &x, std::valarray<double> *y) {
|
||
|
y[0][0] = std::cos(x);
|
||
|
y[0][1] = -std::sin(x);
|
||
|
}
|
||
|
|
||
|
/** \addtogroup ode Ordinary Differential Equations
|
||
|
* @{
|
||
|
*/
|
||
|
/**
|
||
|
* @brief Compute next step approximation using the midpoint-Euler
|
||
|
* method.
|
||
|
* @f[y_{n+1} = y_n + dx\, f\left(x_n+\frac{1}{2}dx,
|
||
|
* y_n + \frac{1}{2}dx\,f\left(x_n,y_n\right)\right)@f]
|
||
|
*
|
||
|
* @param[in] dx step size
|
||
|
* @param[in] x take \f$x_n\f$ and compute \f$x_{n+1}\f$
|
||
|
* @param[in,out] y take \f$y_n\f$ and compute \f$y_{n+1}\f$
|
||
|
* @param[in,out] dy compute \f$f\left(x_n,y_n\right)\f$
|
||
|
*/
|
||
|
void midpoint_euler_step(const double dx, const double &x,
|
||
|
std::valarray<double> *y, std::valarray<double> *dy) {
|
||
|
problem(x, y, dy);
|
||
|
double tmp_x = x + 0.5 * dx;
|
||
|
|
||
|
std::valarray<double> tmp_y = y[0] + dy[0] * (0.5 * dx);
|
||
|
|
||
|
problem(tmp_x, &tmp_y, dy);
|
||
|
|
||
|
y[0] += dy[0] * dx;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Compute approximation using the midpoint-Euler
|
||
|
* method in the given limits.
|
||
|
* @param[in] dx step size
|
||
|
* @param[in] x0 initial value of independent variable
|
||
|
* @param[in] x_max final value of independent variable
|
||
|
* @param[in,out] y take \f$y_n\f$ and compute \f$y_{n+1}\f$
|
||
|
* @param[in] save_to_file flag to save results to a CSV file (1) or not (0)
|
||
|
* @returns time taken for computation in seconds
|
||
|
*/
|
||
|
double midpoint_euler(double dx, double x0, double x_max,
|
||
|
std::valarray<double> *y, bool save_to_file = false) {
|
||
|
std::valarray<double> dy = y[0];
|
||
|
|
||
|
std::ofstream fp;
|
||
|
if (save_to_file) {
|
||
|
fp.open("midpoint_euler.csv", std::ofstream::out);
|
||
|
if (!fp.is_open()) {
|
||
|
std::perror("Error! ");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::size_t L = y->size();
|
||
|
|
||
|
/* start integration */
|
||
|
std::clock_t t1 = std::clock();
|
||
|
double x = x0;
|
||
|
do { // iterate for each step of independent variable
|
||
|
if (save_to_file && fp.is_open()) {
|
||
|
// write to file
|
||
|
fp << x << ",";
|
||
|
for (int i = 0; i < L - 1; i++) {
|
||
|
fp << y[0][i] << ",";
|
||
|
}
|
||
|
fp << y[0][L - 1] << "\n";
|
||
|
}
|
||
|
|
||
|
midpoint_euler_step(dx, x, y, &dy); // perform integration
|
||
|
x += dx; // update step
|
||
|
} while (x <= x_max); // till upper limit of independent variable
|
||
|
/* end of integration */
|
||
|
std::clock_t t2 = std::clock();
|
||
|
|
||
|
if (fp.is_open())
|
||
|
fp.close();
|
||
|
|
||
|
return static_cast<double>(t2 - t1) / CLOCKS_PER_SEC;
|
||
|
}
|
||
|
|
||
|
/** @} */
|
||
|
|
||
|
/**
|
||
|
* Function to compute and save exact solution for comparison
|
||
|
*
|
||
|
* \param [in] X0 initial value of independent variable
|
||
|
* \param [in] X_MAX final value of independent variable
|
||
|
* \param [in] step_size independent variable step size
|
||
|
* \param [in] Y0 initial values of dependent variables
|
||
|
*/
|
||
|
void save_exact_solution(const double &X0, const double &X_MAX,
|
||
|
const double &step_size,
|
||
|
const std::valarray<double> &Y0) {
|
||
|
double x = X0;
|
||
|
std::valarray<double> y = Y0;
|
||
|
|
||
|
std::ofstream fp("exact.csv", std::ostream::out);
|
||
|
if (!fp.is_open()) {
|
||
|
std::perror("Error! ");
|
||
|
return;
|
||
|
}
|
||
|
std::cout << "Finding exact solution\n";
|
||
|
|
||
|
std::clock_t t1 = std::clock();
|
||
|
do {
|
||
|
fp << x << ",";
|
||
|
for (int i = 0; i < y.size() - 1; i++) {
|
||
|
fp << y[i] << ",";
|
||
|
}
|
||
|
fp << y[y.size() - 1] << "\n";
|
||
|
|
||
|
exact_solution(x, &y);
|
||
|
|
||
|
x += step_size;
|
||
|
} while (x <= X_MAX);
|
||
|
|
||
|
std::clock_t t2 = std::clock();
|
||
|
double total_time = static_cast<double>(t2 - t1) / CLOCKS_PER_SEC;
|
||
|
std::cout << "\tTime = " << total_time << " ms\n";
|
||
|
|
||
|
fp.close();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Main Function
|
||
|
*/
|
||
|
int main(int argc, char *argv[]) {
|
||
|
double X0 = 0.f; /* initial value of x0 */
|
||
|
double X_MAX = 10.F; /* upper limit of integration */
|
||
|
std::valarray<double> Y0 = {1.f, 0.f}; /* initial value Y = y(x = x_0) */
|
||
|
double step_size;
|
||
|
|
||
|
if (argc == 1) {
|
||
|
std::cout << "\nEnter the step size: ";
|
||
|
std::cin >> step_size;
|
||
|
} else {
|
||
|
// use commandline argument as independent variable step size
|
||
|
step_size = std::atof(argv[1]);
|
||
|
}
|
||
|
|
||
|
// get approximate solution
|
||
|
double total_time = midpoint_euler(step_size, X0, X_MAX, &Y0, true);
|
||
|
std::cout << "\tTime = " << total_time << " ms\n";
|
||
|
|
||
|
/* compute exact solution for comparion */
|
||
|
save_exact_solution(X0, X_MAX, step_size, Y0);
|
||
|
|
||
|
return 0;
|
||
|
}
|