mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
377 lines
14 KiB
C++
377 lines
14 KiB
C++
|
/**
|
|||
|
* @file
|
|||
|
* @brief Recursive version of Inorder, Preorder, and Postorder [Traversal of
|
|||
|
* the Tree] (https://en.wikipedia.org/wiki/Tree_traversal)
|
|||
|
*
|
|||
|
* @details
|
|||
|
*
|
|||
|
* ### Iterative Inorder Traversal of a tree
|
|||
|
* For traversing a (non-empty) binary tree in an inorder fashion, we must do
|
|||
|
* these three things for every node n starting from the tree’s root:
|
|||
|
*
|
|||
|
* (L) Recursively traverse its left subtree. When this step is finished,
|
|||
|
* we are back at n again.
|
|||
|
* (N) Process n itself.
|
|||
|
* (R) Recursively traverse its right subtree. When this step is finished,
|
|||
|
* we are back at n again.
|
|||
|
*
|
|||
|
* In normal inorder traversal, we visit the left subtree before the right
|
|||
|
* subtree. If we visit the right subtree before visiting the left subtree, it
|
|||
|
* is referred to as reverse inorder traversal.
|
|||
|
*
|
|||
|
* ### Iterative Preorder Traversal of a tree
|
|||
|
* For traversing a (non-empty) binary tree in a preorder fashion, we must do
|
|||
|
* these three things for every node n starting from the tree’s root:
|
|||
|
*
|
|||
|
* (N) Process n itself.
|
|||
|
* (L) Recursively traverse its left subtree. When this step is finished,
|
|||
|
* we are back at n again.
|
|||
|
* (R) Recursively traverse its right subtree. When this step is finished,
|
|||
|
* we are back at n again.
|
|||
|
*
|
|||
|
* In normal preorder traversal, visit the left subtree before the right
|
|||
|
* subtree. If we visit the right subtree before visiting the left subtree, it
|
|||
|
* is referred to as reverse preorder traversal.
|
|||
|
*
|
|||
|
* ### Iterative Postorder Traversal of a tree
|
|||
|
* For traversing a (non-empty) binary tree in a postorder fashion, we must do
|
|||
|
* these three things for every node n starting from the tree’s root:
|
|||
|
*
|
|||
|
* (L) Recursively traverse its left subtree. When this step is finished,
|
|||
|
* we are back at n again.
|
|||
|
* (R) Recursively traverse its right subtree. When this step is finished,
|
|||
|
* we are back at n again.
|
|||
|
* (N) Process n itself.
|
|||
|
*
|
|||
|
* In normal postorder traversal, visit the left subtree before the right
|
|||
|
* subtree. If we visit the right subtree before visiting the left subtree, it
|
|||
|
* is referred to as reverse postorder traversal.
|
|||
|
*
|
|||
|
* @author [Lajat Manekar](https://github.com/Lazeeez)
|
|||
|
*
|
|||
|
*/
|
|||
|
|
|||
|
#include <cassert> /// for assert
|
|||
|
#include <iostream> /// for I/O operations
|
|||
|
#include <vector> /// for vector
|
|||
|
|
|||
|
/**
|
|||
|
* @namespace others
|
|||
|
* @brief Other algorithms
|
|||
|
*/
|
|||
|
namespace others {
|
|||
|
|
|||
|
/**
|
|||
|
* @namespace interpolation_search
|
|||
|
* @brief Functions for the Recursive version of Inorder, Preorder, and
|
|||
|
* Postorder [Traversal of the
|
|||
|
* Tree](https://en.wikipedia.org/wiki/Tree_traversal) algorithm implementation
|
|||
|
*/
|
|||
|
namespace recursive_tree_traversals {
|
|||
|
|
|||
|
/**
|
|||
|
* @brief The structure to hold Nodes of the tree.
|
|||
|
* @param data Value that will be stored in the node.
|
|||
|
* @param left follow up left subtree.
|
|||
|
* @param right follow up right subtree.
|
|||
|
*/
|
|||
|
struct Node {
|
|||
|
uint64_t data = 0; ///< The value/key of the node.
|
|||
|
struct Node *left{}; ///< struct pointer to left subtree.
|
|||
|
struct Node *right{}; ///< struct pointer to right subtree.
|
|||
|
};
|
|||
|
/**
|
|||
|
* @brief BT used to make the entire structure of the binary tree and the
|
|||
|
* functions associated with the binary tree
|
|||
|
*/
|
|||
|
class BT {
|
|||
|
public:
|
|||
|
std::vector<uint64_t>
|
|||
|
inorder_result; // vector to store the inorder traversal of the tree.
|
|||
|
std::vector<uint64_t>
|
|||
|
preorder_result; // vector to store the preorder traversal of the tree.
|
|||
|
std::vector<uint64_t> postorder_result; // vector to store the preorder
|
|||
|
// traversal of the tree.
|
|||
|
|
|||
|
Node *createNewNode(
|
|||
|
uint64_t); // function that will create new node for insertion.
|
|||
|
|
|||
|
std::vector<uint64_t> inorder(
|
|||
|
Node *); // function that takes root of the tree as an argument and
|
|||
|
// returns its inorder traversal.
|
|||
|
std::vector<uint64_t> preorder(
|
|||
|
Node *); // function that takes root of the tree as an argument and
|
|||
|
// returns its preorder traversal.
|
|||
|
std::vector<uint64_t> postorder(
|
|||
|
Node *); // function that takes root of the tree as an argument and
|
|||
|
// returns its postorder traversal.
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* @brief will allocate the memory for a node and, along the data and return the
|
|||
|
* node.
|
|||
|
* @param data value that a particular node will contain.
|
|||
|
* @return pointer to the newly created node with assigned data.
|
|||
|
*/
|
|||
|
Node *BT::createNewNode(uint64_t data) {
|
|||
|
Node *node = new Node();
|
|||
|
node->data = data;
|
|||
|
node->left = node->right = nullptr;
|
|||
|
return node;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* @brief inorder() function that will perform the inorder traversal
|
|||
|
* recursively, and return the resultant vector that contain the inorder
|
|||
|
* traversal of a tree.
|
|||
|
* @param root head/root node of a tree
|
|||
|
* @return result that is containing the inorder traversal of a tree
|
|||
|
**/
|
|||
|
std::vector<uint64_t> BT::inorder(Node *root) {
|
|||
|
if (root == nullptr) { // return if the current node is empty
|
|||
|
return {};
|
|||
|
}
|
|||
|
|
|||
|
inorder(root->left); // Traverse the left subtree
|
|||
|
BT::inorder_result.push_back(
|
|||
|
root->data); // Display the data part of the root (or current node)
|
|||
|
inorder(root->right); // Traverse the right subtree
|
|||
|
|
|||
|
return inorder_result;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* @brief preorder function that will perform the preorder traversal
|
|||
|
* recursively, and return the resultant vector that contain the preorder
|
|||
|
* traversal of a tree.
|
|||
|
* @param root head/root node of a tree
|
|||
|
* @return result that is containing the preorder traversal of a tree
|
|||
|
*/
|
|||
|
std::vector<uint64_t> BT::preorder(Node *root) {
|
|||
|
if (root == nullptr) { // if the current node is empty
|
|||
|
return {};
|
|||
|
}
|
|||
|
|
|||
|
BT::preorder_result.push_back(
|
|||
|
root->data); // Display the data part of the root (or current node)
|
|||
|
preorder(root->left); // Traverse the left subtree
|
|||
|
preorder(root->right); // Traverse the right subtree
|
|||
|
|
|||
|
return preorder_result;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* @brief postorder function that will perform the postorder traversal
|
|||
|
* recursively, and return the result vector that contain the postorder
|
|||
|
* traversal of a tree.
|
|||
|
* @param root head/root node of a tree
|
|||
|
* @return result that is containing the postorder traversal of a tree
|
|||
|
*/
|
|||
|
std::vector<uint64_t> BT::postorder(Node *root) {
|
|||
|
if (root == nullptr) { // if the current node is empty
|
|||
|
return {};
|
|||
|
}
|
|||
|
|
|||
|
postorder(root->left); // Traverse the left subtree
|
|||
|
postorder(root->right); // Traverse the right subtree
|
|||
|
BT::postorder_result.push_back(
|
|||
|
root->data); // Display the data part of the root (or current node)
|
|||
|
|
|||
|
return postorder_result;
|
|||
|
}
|
|||
|
|
|||
|
} // namespace recursive_tree_traversals
|
|||
|
|
|||
|
} // namespace others
|
|||
|
|
|||
|
/**
|
|||
|
* @brief 1st test-case
|
|||
|
* @returns void
|
|||
|
*/
|
|||
|
void test1() {
|
|||
|
others::recursive_tree_traversals::BT obj1;
|
|||
|
others::recursive_tree_traversals::Node *root = obj1.createNewNode(2);
|
|||
|
root->left = obj1.createNewNode(7);
|
|||
|
root->right = obj1.createNewNode(5);
|
|||
|
root->left->left = obj1.createNewNode(2);
|
|||
|
root->left->right = obj1.createNewNode(6);
|
|||
|
root->right->right = obj1.createNewNode(9);
|
|||
|
root->left->right->left = obj1.createNewNode(5);
|
|||
|
root->left->right->right = obj1.createNewNode(11);
|
|||
|
root->right->right->left = obj1.createNewNode(4);
|
|||
|
|
|||
|
std::vector<uint64_t> actual_result_inorder{2, 7, 5, 6, 11, 2, 5, 4, 9};
|
|||
|
std::vector<uint64_t> actual_result_preorder{2, 7, 2, 6, 5, 11, 5, 9, 4};
|
|||
|
std::vector<uint64_t> actual_result_postorder{2, 5, 11, 6, 7, 4, 9, 5, 2};
|
|||
|
std::vector<uint64_t> result_inorder; ///< result stores the inorder
|
|||
|
///< traversal of the binary tree
|
|||
|
std::vector<uint64_t> result_preorder; ///< result stores the preorder
|
|||
|
///< traversal of the binary tree
|
|||
|
std::vector<uint64_t> result_postorder; ///< result stores the postorder
|
|||
|
///< traversal of the binary tree
|
|||
|
|
|||
|
uint64_t size = actual_result_inorder.size();
|
|||
|
|
|||
|
// Calling inorder() function by passing a root node,
|
|||
|
// and storing the inorder traversal in result_inorder.
|
|||
|
result_inorder = obj1.inorder(root);
|
|||
|
std::cout << "Testcase #1: Inorder Traversal...";
|
|||
|
for (auto i = 0; i < size; ++i) {
|
|||
|
assert(actual_result_inorder[i] == result_inorder[i]);
|
|||
|
}
|
|||
|
std::cout << "Passed!" << std::endl;
|
|||
|
|
|||
|
// Calling preorder() function by passing a root node,
|
|||
|
// and storing the preorder traversal in result_preorder.
|
|||
|
result_preorder = obj1.preorder(root);
|
|||
|
std::cout << "Testcase #1: Preorder Traversal...";
|
|||
|
for (auto i = 0; i < size; ++i) {
|
|||
|
assert(actual_result_preorder[i] == result_preorder[i]);
|
|||
|
}
|
|||
|
std::cout << "Passed!" << std::endl;
|
|||
|
|
|||
|
// Calling postorder() function by passing a root node,
|
|||
|
// and storing the postorder traversal in result_postorder.
|
|||
|
result_postorder = obj1.postorder(root);
|
|||
|
std::cout << "Testcase #1: Postorder Traversal...";
|
|||
|
for (auto i = 0; i < size; ++i) {
|
|||
|
assert(actual_result_postorder[i] == result_postorder[i]);
|
|||
|
}
|
|||
|
std::cout << "Passed!" << std::endl;
|
|||
|
|
|||
|
std::cout << std::endl;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* @brief 2nd test-case
|
|||
|
* @returns void
|
|||
|
*/
|
|||
|
void test2() {
|
|||
|
others::recursive_tree_traversals::BT obj2;
|
|||
|
others::recursive_tree_traversals::Node *root = obj2.createNewNode(1);
|
|||
|
root->left = obj2.createNewNode(2);
|
|||
|
root->right = obj2.createNewNode(3);
|
|||
|
root->left->left = obj2.createNewNode(4);
|
|||
|
root->right->left = obj2.createNewNode(5);
|
|||
|
root->right->right = obj2.createNewNode(6);
|
|||
|
root->right->left->left = obj2.createNewNode(7);
|
|||
|
root->right->left->right = obj2.createNewNode(8);
|
|||
|
|
|||
|
std::vector<uint64_t> actual_result_inorder{4, 2, 1, 7, 5, 8, 3, 6};
|
|||
|
std::vector<uint64_t> actual_result_preorder{1, 2, 4, 3, 5, 7, 8, 6};
|
|||
|
std::vector<uint64_t> actual_result_postorder{4, 2, 7, 8, 5, 6, 3, 1};
|
|||
|
std::vector<uint64_t> result_inorder; ///< result stores the inorder
|
|||
|
///< traversal of the binary tree
|
|||
|
std::vector<uint64_t> result_preorder; ///< result stores the preorder
|
|||
|
///< traversal of the binary tree
|
|||
|
std::vector<uint64_t> result_postorder; ///< result stores the postorder
|
|||
|
///< traversal of the binary tree
|
|||
|
|
|||
|
uint64_t size = actual_result_inorder.size();
|
|||
|
|
|||
|
// Calling inorder() function by passing a root node,
|
|||
|
// and storing the inorder traversal in result_inorder.
|
|||
|
result_inorder = obj2.inorder(root);
|
|||
|
std::cout << "Testcase #2: Inorder Traversal...";
|
|||
|
for (auto i = 0; i < size; ++i) {
|
|||
|
assert(actual_result_inorder[i] == result_inorder[i]);
|
|||
|
}
|
|||
|
std::cout << "Passed!" << std::endl;
|
|||
|
|
|||
|
// Calling preorder() function by passing a root node,
|
|||
|
// and storing the preorder traversal in result_preorder.
|
|||
|
result_preorder = obj2.preorder(root);
|
|||
|
std::cout << "Testcase #2: Preorder Traversal...";
|
|||
|
for (auto i = 0; i < size; ++i) {
|
|||
|
assert(actual_result_preorder[i] == result_preorder[i]);
|
|||
|
}
|
|||
|
std::cout << "Passed!" << std::endl;
|
|||
|
|
|||
|
// Calling postorder() function by passing a root node,
|
|||
|
// and storing the postorder traversal in result_postorder.
|
|||
|
result_postorder = obj2.postorder(root);
|
|||
|
std::cout << "Testcase #2: Postorder Traversal...";
|
|||
|
for (auto i = 0; i < size; ++i) {
|
|||
|
assert(actual_result_postorder[i] == result_postorder[i]);
|
|||
|
}
|
|||
|
std::cout << "Passed!" << std::endl;
|
|||
|
|
|||
|
std::cout << std::endl;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* @brief 3rd test-case
|
|||
|
* @returns void
|
|||
|
*/
|
|||
|
void test3() {
|
|||
|
others::recursive_tree_traversals::BT obj3;
|
|||
|
others::recursive_tree_traversals::Node *root = obj3.createNewNode(1);
|
|||
|
root->left = obj3.createNewNode(2);
|
|||
|
root->right = obj3.createNewNode(3);
|
|||
|
root->left->left = obj3.createNewNode(4);
|
|||
|
root->left->right = obj3.createNewNode(5);
|
|||
|
|
|||
|
std::vector<uint64_t> actual_result_inorder{4, 2, 5, 1, 3};
|
|||
|
std::vector<uint64_t> actual_result_preorder{1, 2, 4, 5, 3};
|
|||
|
std::vector<uint64_t> actual_result_postorder{4, 5, 2, 3, 1};
|
|||
|
std::vector<uint64_t> result_inorder; ///< result stores the inorder
|
|||
|
///< traversal of the binary tree
|
|||
|
std::vector<uint64_t> result_preorder; ///< result stores the preorder
|
|||
|
///< traversal of the binary tree
|
|||
|
std::vector<uint64_t> result_postorder; ///< result stores the postorder
|
|||
|
///< traversal of the binary tree
|
|||
|
|
|||
|
uint64_t size = actual_result_inorder.size();
|
|||
|
|
|||
|
// Calling inorder() function by passing a root node,
|
|||
|
// and storing the inorder traversal in result_inorder.
|
|||
|
|
|||
|
result_inorder = obj3.inorder(root);
|
|||
|
std::cout << "Testcase #3: Inorder Traversal...";
|
|||
|
for (auto i = 0; i < size; ++i) {
|
|||
|
assert(actual_result_inorder[i] == result_inorder[i]);
|
|||
|
}
|
|||
|
std::cout << "Passed!" << std::endl;
|
|||
|
|
|||
|
// Calling preorder() function by passing a root node,
|
|||
|
// and storing the preorder traversal in result_preorder.
|
|||
|
result_preorder = obj3.preorder(root);
|
|||
|
std::cout << "Testcase #3: Preorder Traversal...";
|
|||
|
for (auto i = 0; i < size; ++i) {
|
|||
|
assert(actual_result_preorder[i] == result_preorder[i]);
|
|||
|
}
|
|||
|
std::cout << "Passed!" << std::endl;
|
|||
|
|
|||
|
// Calling postorder() function by passing a root node,
|
|||
|
// and storing the postorder traversal in result_postorder.
|
|||
|
result_postorder = obj3.postorder(root);
|
|||
|
std::cout << "Testcase #3: Postorder Traversal...";
|
|||
|
for (auto i = 0; i < size; ++i) {
|
|||
|
assert(actual_result_postorder[i] == result_postorder[i]);
|
|||
|
}
|
|||
|
std::cout << "Passed!" << std::endl;
|
|||
|
|
|||
|
std::cout << std::endl;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* @brief Self-test implementations
|
|||
|
* @returns void
|
|||
|
*/
|
|||
|
static void tests() {
|
|||
|
std::cout << "1st test-case" << std::endl;
|
|||
|
test1(); // run 1st test-case
|
|||
|
std::cout << "2nd test-case" << std::endl;
|
|||
|
test2(); // run 2nd test-case
|
|||
|
std::cout << "3rd test-case" << std::endl;
|
|||
|
test3(); // run 3rd test-case
|
|||
|
}
|
|||
|
/**
|
|||
|
* @brief Main function
|
|||
|
* @returns 0 on exit
|
|||
|
*/
|
|||
|
int main() {
|
|||
|
tests(); // run self-test implementations
|
|||
|
return 0;
|
|||
|
}
|