mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
340 lines
11 KiB
C++
340 lines
11 KiB
C++
|
/**
|
||
|
* @file
|
||
|
* \brief Compute all possible approximate roots of any given polynomial using
|
||
|
* [Durand Kerner
|
||
|
* algorithm](https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method)
|
||
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
||
|
*
|
||
|
* Test the algorithm online:
|
||
|
* https://gist.github.com/kvedala/27f1b0b6502af935f6917673ec43bcd7
|
||
|
*
|
||
|
* Try the highly unstable Wilkinson's polynomial:
|
||
|
* ```
|
||
|
* ./numerical_methods/durand_kerner_roots 1 -210 20615 -1256850 53327946
|
||
|
* -1672280820 40171771630 -756111184500 11310276995381 -135585182899530
|
||
|
* 1307535010540395 -10142299865511450 63030812099294896 -311333643161390640
|
||
|
* 1206647803780373360 -3599979517947607200 8037811822645051776
|
||
|
* -12870931245150988800 13803759753640704000 -8752948036761600000
|
||
|
* 2432902008176640000
|
||
|
* ```
|
||
|
* Sample implementation results to compute approximate roots of the equation
|
||
|
* \f$x^4-1=0\f$:\n
|
||
|
* <img
|
||
|
* src="https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/numerical_methods/durand_kerner_error.svg"
|
||
|
* width="400" alt="Error evolution during root approximations computed every
|
||
|
* iteration."/> <img
|
||
|
* src="https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/numerical_methods/durand_kerner_roots.svg"
|
||
|
* width="400" alt="Roots evolution - shows the initial approximation of the
|
||
|
* roots and their convergence to a final approximation along with the iterative
|
||
|
* approximations" />
|
||
|
*/
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <cassert>
|
||
|
#include <cmath>
|
||
|
#include <complex>
|
||
|
#include <cstdlib>
|
||
|
#include <ctime>
|
||
|
#include <fstream>
|
||
|
#include <iostream>
|
||
|
#include <valarray>
|
||
|
#ifdef _OPENMP
|
||
|
#include <omp.h>
|
||
|
#endif
|
||
|
|
||
|
#define ACCURACY 1e-10 /**< maximum accuracy limit */
|
||
|
|
||
|
/**
|
||
|
* Evaluate the value of a polynomial with given coefficients
|
||
|
* \param[in] coeffs coefficients of the polynomial
|
||
|
* \param[in] x point at which to evaluate the polynomial
|
||
|
* \returns \f$f(x)\f$
|
||
|
**/
|
||
|
std::complex<double> poly_function(const std::valarray<double> &coeffs,
|
||
|
std::complex<double> x) {
|
||
|
double real = 0.f, imag = 0.f;
|
||
|
int n;
|
||
|
|
||
|
// #ifdef _OPENMP
|
||
|
// #pragma omp target teams distribute reduction(+ : real, imag)
|
||
|
// #endif
|
||
|
for (n = 0; n < coeffs.size(); n++) {
|
||
|
std::complex<double> tmp =
|
||
|
coeffs[n] * std::pow(x, coeffs.size() - n - 1);
|
||
|
real += tmp.real();
|
||
|
imag += tmp.imag();
|
||
|
}
|
||
|
|
||
|
return std::complex<double>(real, imag);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* create a textual form of complex number
|
||
|
* \param[in] x point at which to evaluate the polynomial
|
||
|
* \returns pointer to converted string
|
||
|
*/
|
||
|
const char *complex_str(const std::complex<double> &x) {
|
||
|
#define MAX_BUFF_SIZE 50
|
||
|
static char msg[MAX_BUFF_SIZE];
|
||
|
|
||
|
std::snprintf(msg, MAX_BUFF_SIZE, "% 7.04g%+7.04gj", x.real(), x.imag());
|
||
|
|
||
|
return msg;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* check for termination condition
|
||
|
* \param[in] delta point at which to evaluate the polynomial
|
||
|
* \returns `false` if termination not reached
|
||
|
* \returns `true` if termination reached
|
||
|
*/
|
||
|
bool check_termination(long double delta) {
|
||
|
static long double past_delta = INFINITY;
|
||
|
if (std::abs(past_delta - delta) <= ACCURACY || delta < ACCURACY)
|
||
|
return true;
|
||
|
past_delta = delta;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Implements Durand Kerner iterative algorithm to compute all roots of a
|
||
|
* polynomial.
|
||
|
*
|
||
|
* \param[in] coeffs coefficients of the polynomial
|
||
|
* \param[out] roots the computed roots of the polynomial
|
||
|
* \param[in] write_log flag whether to save the log file (default = `false`)
|
||
|
* \returns pair of values - number of iterations taken and final accuracy
|
||
|
* achieved
|
||
|
*/
|
||
|
std::pair<uint32_t, double> durand_kerner_algo(
|
||
|
const std::valarray<double> &coeffs,
|
||
|
std::valarray<std::complex<double>> *roots, bool write_log = false) {
|
||
|
long double tol_condition = 1;
|
||
|
uint32_t iter = 0;
|
||
|
int n;
|
||
|
std::ofstream log_file;
|
||
|
|
||
|
if (write_log) {
|
||
|
/*
|
||
|
* store intermediate values to a CSV file
|
||
|
*/
|
||
|
log_file.open("durand_kerner.log.csv");
|
||
|
if (!log_file.is_open()) {
|
||
|
perror("Unable to create a storage log file!");
|
||
|
std::exit(EXIT_FAILURE);
|
||
|
}
|
||
|
log_file << "iter#,";
|
||
|
|
||
|
for (n = 0; n < roots->size(); n++) log_file << "root_" << n << ",";
|
||
|
|
||
|
log_file << "avg. correction";
|
||
|
log_file << "\n0,";
|
||
|
for (n = 0; n < roots->size(); n++)
|
||
|
log_file << complex_str((*roots)[n]) << ",";
|
||
|
}
|
||
|
|
||
|
bool break_loop = false;
|
||
|
while (!check_termination(tol_condition) && iter < INT16_MAX &&
|
||
|
!break_loop) {
|
||
|
tol_condition = 0;
|
||
|
iter++;
|
||
|
break_loop = false;
|
||
|
|
||
|
if (log_file.is_open())
|
||
|
log_file << "\n" << iter << ",";
|
||
|
|
||
|
#ifdef _OPENMP
|
||
|
#pragma omp parallel for shared(break_loop, tol_condition)
|
||
|
#endif
|
||
|
for (n = 0; n < roots->size(); n++) {
|
||
|
if (break_loop)
|
||
|
continue;
|
||
|
|
||
|
std::complex<double> numerator, denominator;
|
||
|
numerator = poly_function(coeffs, (*roots)[n]);
|
||
|
denominator = 1.0;
|
||
|
for (int i = 0; i < roots->size(); i++)
|
||
|
if (i != n)
|
||
|
denominator *= (*roots)[n] - (*roots)[i];
|
||
|
|
||
|
std::complex<long double> delta = numerator / denominator;
|
||
|
|
||
|
if (std::isnan(std::abs(delta)) || std::isinf(std::abs(delta))) {
|
||
|
std::cerr << "\n\nOverflow/underrun error - got value = "
|
||
|
<< std::abs(delta) << "\n";
|
||
|
// return std::pair<uint32_t, double>(iter, tol_condition);
|
||
|
break_loop = true;
|
||
|
}
|
||
|
|
||
|
(*roots)[n] -= delta;
|
||
|
|
||
|
#ifdef _OPENMP
|
||
|
#pragma omp critical
|
||
|
#endif
|
||
|
tol_condition = std::max(tol_condition, std::abs(std::abs(delta)));
|
||
|
}
|
||
|
// tol_condition /= (degree - 1);
|
||
|
|
||
|
if (break_loop)
|
||
|
break;
|
||
|
|
||
|
if (log_file.is_open()) {
|
||
|
for (n = 0; n < roots->size(); n++)
|
||
|
log_file << complex_str((*roots)[n]) << ",";
|
||
|
}
|
||
|
|
||
|
#if defined(DEBUG) || !defined(NDEBUG)
|
||
|
if (iter % 500 == 0) {
|
||
|
std::cout << "Iter: " << iter << "\t";
|
||
|
for (n = 0; n < roots->size(); n++)
|
||
|
std::cout << "\t" << complex_str((*roots)[n]);
|
||
|
std::cout << "\t\tabsolute average change: " << tol_condition
|
||
|
<< "\n";
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (log_file.is_open())
|
||
|
log_file << tol_condition;
|
||
|
}
|
||
|
|
||
|
return std::pair<uint32_t, long double>(iter, tol_condition);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Self test the algorithm by checking the roots for \f$x^2+4=0\f$ to which the
|
||
|
* roots are \f$0 \pm 2i\f$
|
||
|
*/
|
||
|
void test1() {
|
||
|
const std::valarray<double> coeffs = {1, 0, 4}; // x^2 - 2 = 0
|
||
|
std::valarray<std::complex<double>> roots(2);
|
||
|
std::valarray<std::complex<double>> expected = {
|
||
|
std::complex<double>(0., 2.),
|
||
|
std::complex<double>(0., -2.) // known expected roots
|
||
|
};
|
||
|
|
||
|
/* initialize root approximations with random values */
|
||
|
for (int n = 0; n < roots.size(); n++) {
|
||
|
roots[n] = std::complex<double>(std::rand() % 100, std::rand() % 100);
|
||
|
roots[n] -= 50.f;
|
||
|
roots[n] /= 25.f;
|
||
|
}
|
||
|
|
||
|
auto result = durand_kerner_algo(coeffs, &roots, false);
|
||
|
|
||
|
for (int i = 0; i < roots.size(); i++) {
|
||
|
// check if approximations are have < 0.1% error with one of the
|
||
|
// expected roots
|
||
|
bool err1 = false;
|
||
|
for (int j = 0; j < roots.size(); j++)
|
||
|
err1 |= std::abs(std::abs(roots[i] - expected[j])) < 1e-3;
|
||
|
assert(err1);
|
||
|
}
|
||
|
|
||
|
std::cout << "Test 1 passed! - " << result.first << " iterations, "
|
||
|
<< result.second << " accuracy"
|
||
|
<< "\n";
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Self test the algorithm by checking the roots for \f$0.015625x^3-1=0\f$ to
|
||
|
* which the roots are \f$(4+0i),\,(-2\pm3.464i)\f$
|
||
|
*/
|
||
|
void test2() {
|
||
|
const std::valarray<double> coeffs = {// 0.015625 x^3 - 1 = 0
|
||
|
1. / 64., 0., 0., -1.};
|
||
|
std::valarray<std::complex<double>> roots(3);
|
||
|
const std::valarray<std::complex<double>> expected = {
|
||
|
std::complex<double>(4., 0.), std::complex<double>(-2., 3.46410162),
|
||
|
std::complex<double>(-2., -3.46410162) // known expected roots
|
||
|
};
|
||
|
|
||
|
/* initialize root approximations with random values */
|
||
|
for (int n = 0; n < roots.size(); n++) {
|
||
|
roots[n] = std::complex<double>(std::rand() % 100, std::rand() % 100);
|
||
|
roots[n] -= 50.f;
|
||
|
roots[n] /= 25.f;
|
||
|
}
|
||
|
|
||
|
auto result = durand_kerner_algo(coeffs, &roots, false);
|
||
|
|
||
|
for (int i = 0; i < roots.size(); i++) {
|
||
|
// check if approximations are have < 0.1% error with one of the
|
||
|
// expected roots
|
||
|
bool err1 = false;
|
||
|
for (int j = 0; j < roots.size(); j++)
|
||
|
err1 |= std::abs(std::abs(roots[i] - expected[j])) < 1e-3;
|
||
|
assert(err1);
|
||
|
}
|
||
|
|
||
|
std::cout << "Test 2 passed! - " << result.first << " iterations, "
|
||
|
<< result.second << " accuracy"
|
||
|
<< "\n";
|
||
|
}
|
||
|
|
||
|
/***
|
||
|
* Main function.
|
||
|
* The comandline input arguments are taken as coeffiecients of a
|
||
|
*polynomial. For example, this command
|
||
|
* ```sh
|
||
|
* ./durand_kerner_roots 1 0 -4
|
||
|
* ```
|
||
|
* will find roots of the polynomial \f$1\cdot x^2 + 0\cdot x^1 + (-4)=0\f$
|
||
|
**/
|
||
|
int main(int argc, char **argv) {
|
||
|
/* initialize random seed: */
|
||
|
std::srand(std::time(nullptr));
|
||
|
|
||
|
if (argc < 2) {
|
||
|
test1(); // run tests when no input is provided
|
||
|
test2(); // and skip tests when input polynomial is provided
|
||
|
std::cout << "Please pass the coefficients of the polynomial as "
|
||
|
"commandline "
|
||
|
"arguments.\n";
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int n, degree = argc - 1; // detected polynomial degree
|
||
|
std::valarray<double> coeffs(degree); // create coefficiencts array
|
||
|
|
||
|
// number of roots = degree - 1
|
||
|
std::valarray<std::complex<double>> s0(degree - 1);
|
||
|
|
||
|
std::cout << "Computing the roots for:\n\t";
|
||
|
for (n = 0; n < degree; n++) {
|
||
|
coeffs[n] = strtod(argv[n + 1], nullptr);
|
||
|
if (n < degree - 1 && coeffs[n] != 0)
|
||
|
std::cout << "(" << coeffs[n] << ") x^" << degree - n - 1 << " + ";
|
||
|
else if (coeffs[n] != 0)
|
||
|
std::cout << "(" << coeffs[n] << ") x^" << degree - n - 1
|
||
|
<< " = 0\n";
|
||
|
|
||
|
/* initialize root approximations with random values */
|
||
|
if (n < degree - 1) {
|
||
|
s0[n] = std::complex<double>(std::rand() % 100, std::rand() % 100);
|
||
|
s0[n] -= 50.f;
|
||
|
s0[n] /= 50.f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// numerical errors less when the first coefficient is "1"
|
||
|
// hence, we normalize the first coefficient
|
||
|
{
|
||
|
double tmp = coeffs[0];
|
||
|
coeffs /= tmp;
|
||
|
}
|
||
|
|
||
|
clock_t end_time, start_time = clock();
|
||
|
auto result = durand_kerner_algo(coeffs, &s0, true);
|
||
|
end_time = clock();
|
||
|
|
||
|
std::cout << "\nIterations: " << result.first << "\n";
|
||
|
for (n = 0; n < degree - 1; n++)
|
||
|
std::cout << "\t" << complex_str(s0[n]) << "\n";
|
||
|
std::cout << "absolute average change: " << result.second << "\n";
|
||
|
std::cout << "Time taken: "
|
||
|
<< static_cast<double>(end_time - start_time) / CLOCKS_PER_SEC
|
||
|
<< " sec\n";
|
||
|
|
||
|
return 0;
|
||
|
}
|