mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
190 lines
6.2 KiB
C++
190 lines
6.2 KiB
C++
|
/**
|
||
|
* @file
|
||
|
* @brief Calculate quadratic equation with complex roots, i.e. b^2 - 4ac < 0.
|
||
|
*
|
||
|
* @author [Renjian-buchai](https://github.com/Renjian-buchai)
|
||
|
*
|
||
|
* @description Calculates any quadratic equation in form ax^2 + bx + c.
|
||
|
*
|
||
|
* Quadratic equation:
|
||
|
* x = (-b +/- sqrt(b^2 - 4ac)) / 2a
|
||
|
*
|
||
|
* @example
|
||
|
* int main() {
|
||
|
* using std::array;
|
||
|
* using std::complex;
|
||
|
* using std::cout;
|
||
|
*
|
||
|
* array<complex<long double, 2> solutions = quadraticEquation(1, 2, 1);
|
||
|
* cout << solutions[0] << " " << solutions[1] << "\n";
|
||
|
*
|
||
|
* solutions = quadraticEquation(1, 1, 1); // Reusing solutions.
|
||
|
* cout << solutions[0] << " " << solutions[1] << "\n";
|
||
|
* return 0;
|
||
|
* }
|
||
|
*
|
||
|
* Output:
|
||
|
* (-1, 0) (-1, 0)
|
||
|
* (-0.5,0.866025) (-0.5,0.866025)
|
||
|
*/
|
||
|
|
||
|
#include <array> /// std::array
|
||
|
#include <cassert> /// assert
|
||
|
#include <cmath> /// std::sqrt, std::trunc, std::pow
|
||
|
#include <complex> /// std::complex
|
||
|
#include <exception> /// std::invalid_argument
|
||
|
#include <iomanip> /// std::setprecision
|
||
|
#include <iostream> /// std::cout
|
||
|
|
||
|
/**
|
||
|
* @namespace
|
||
|
* @brief Mathematical algorithms
|
||
|
*/
|
||
|
namespace math {
|
||
|
|
||
|
/**
|
||
|
* @brief Quadratic equation calculator.
|
||
|
* @param a quadratic coefficient.
|
||
|
* @param b linear coefficient.
|
||
|
* @param c constant
|
||
|
* @return Array containing the roots of quadratic equation, incl. complex
|
||
|
* root.
|
||
|
*/
|
||
|
std::array<std::complex<long double>, 2> quadraticEquation(long double a,
|
||
|
long double b,
|
||
|
long double c) {
|
||
|
if (a == 0) {
|
||
|
throw std::invalid_argument("quadratic coefficient cannot be 0");
|
||
|
}
|
||
|
|
||
|
long double discriminant = b * b - 4 * a * c;
|
||
|
std::array<std::complex<long double>, 2> solutions{0, 0};
|
||
|
|
||
|
if (discriminant == 0) {
|
||
|
solutions[0] = -b * 0.5 / a;
|
||
|
solutions[1] = -b * 0.5 / a;
|
||
|
return solutions;
|
||
|
}
|
||
|
|
||
|
// Complex root (discriminant < 0)
|
||
|
// Note that the left term (-b / 2a) is always real. The imaginary part
|
||
|
// appears when b^2 - 4ac < 0, so sqrt(b^2 - 4ac) has no real roots. So,
|
||
|
// the imaginary component is i * (+/-)sqrt(abs(b^2 - 4ac)) / 2a.
|
||
|
if (discriminant > 0) {
|
||
|
// Since discriminant > 0, there are only real roots. Therefore,
|
||
|
// imaginary component = 0.
|
||
|
solutions[0] = std::complex<long double>{
|
||
|
(-b - std::sqrt(discriminant)) * 0.5 / a, 0};
|
||
|
solutions[1] = std::complex<long double>{
|
||
|
(-b + std::sqrt(discriminant)) * 0.5 / a, 0};
|
||
|
return solutions;
|
||
|
}
|
||
|
// Since b^2 - 4ac is < 0, for faster computation, -discriminant is
|
||
|
// enough to make it positive.
|
||
|
solutions[0] = std::complex<long double>{
|
||
|
-b * 0.5 / a, -std::sqrt(-discriminant) * 0.5 / a};
|
||
|
solutions[1] = std::complex<long double>{
|
||
|
-b * 0.5 / a, std::sqrt(-discriminant) * 0.5 / a};
|
||
|
|
||
|
return solutions;
|
||
|
}
|
||
|
|
||
|
} // namespace math
|
||
|
|
||
|
/**
|
||
|
* @brief Asserts an array of complex numbers.
|
||
|
* @param input Input array of complex numbers. .
|
||
|
* @param expected Expected array of complex numbers.
|
||
|
* @param precision Precision to be asserted. Default=10
|
||
|
*/
|
||
|
void assertArray(std::array<std::complex<long double>, 2> input,
|
||
|
std::array<std::complex<long double>, 2> expected,
|
||
|
size_t precision = 10) {
|
||
|
long double exponent = std::pow(10, precision);
|
||
|
input[0].real(std::round(input[0].real() * exponent));
|
||
|
input[1].real(std::round(input[1].real() * exponent));
|
||
|
input[0].imag(std::round(input[0].imag() * exponent));
|
||
|
input[1].imag(std::round(input[1].imag() * exponent));
|
||
|
|
||
|
expected[0].real(std::round(expected[0].real() * exponent));
|
||
|
expected[1].real(std::round(expected[1].real() * exponent));
|
||
|
expected[0].imag(std::round(expected[0].imag() * exponent));
|
||
|
expected[1].imag(std::round(expected[1].imag() * exponent));
|
||
|
|
||
|
assert(input == expected);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Self-test implementations to test quadraticEquation function.
|
||
|
* @note There are 4 different types of solutions: Real and equal, real,
|
||
|
* complex, complex and equal.
|
||
|
*/
|
||
|
static void test() {
|
||
|
// Values are equal and real.
|
||
|
std::cout << "Input: \n"
|
||
|
"a=1 \n"
|
||
|
"b=-2 \n"
|
||
|
"c=1 \n"
|
||
|
"Expected output: \n"
|
||
|
"(1, 0), (1, 0)\n\n";
|
||
|
std::array<std::complex<long double>, 2> equalCase{
|
||
|
std::complex<long double>{1, 0}, std::complex<long double>{1, 0}};
|
||
|
assert(math::quadraticEquation(1, -2, 1) == equalCase);
|
||
|
|
||
|
// Values are equal and complex.
|
||
|
std::cout << "Input: \n"
|
||
|
"a=1 \n"
|
||
|
"b=4 \n"
|
||
|
"c=5 \n"
|
||
|
"Expected output: \n"
|
||
|
"(-2, -1), (-2, 1)\n\n";
|
||
|
std::array<std::complex<long double>, 2> complexCase{
|
||
|
std::complex<long double>{-2, -1}, std::complex<long double>{-2, 1}};
|
||
|
assert(math::quadraticEquation(1, 4, 5) == complexCase);
|
||
|
|
||
|
// Values are real.
|
||
|
std::cout << "Input: \n"
|
||
|
"a=1 \n"
|
||
|
"b=5 \n"
|
||
|
"c=1 \n"
|
||
|
"Expected output: \n"
|
||
|
"(-4.7912878475, 0), (-0.2087121525, 0)\n\n";
|
||
|
std::array<std::complex<long double>, 2> floatCase{
|
||
|
std::complex<long double>{-4.7912878475, 0},
|
||
|
std::complex<long double>{-0.2087121525, 0}};
|
||
|
assertArray(math::quadraticEquation(1, 5, 1), floatCase);
|
||
|
|
||
|
// Values are complex.
|
||
|
std::cout << "Input: \n"
|
||
|
"a=1 \n"
|
||
|
"b=1 \n"
|
||
|
"c=1 \n"
|
||
|
"Expected output: \n"
|
||
|
"(-0.5, -0.8660254038), (-0.5, 0.8660254038)\n\n";
|
||
|
std::array<std::complex<long double>, 2> ifloatCase{
|
||
|
std::complex<long double>{-0.5, -0.8660254038},
|
||
|
std::complex<long double>{-0.5, 0.8660254038}};
|
||
|
assertArray(math::quadraticEquation(1, 1, 1), ifloatCase);
|
||
|
|
||
|
std::cout << "Exception test: \n"
|
||
|
"Input: \n"
|
||
|
"a=0 \n"
|
||
|
"b=0 \n"
|
||
|
"c=0\n"
|
||
|
"Expected output: Exception thrown \n";
|
||
|
try {
|
||
|
math::quadraticEquation(0, 0, 0);
|
||
|
} catch (std::invalid_argument& e) {
|
||
|
std::cout << "Exception thrown successfully \n";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Main function
|
||
|
* @returns 0 on exit
|
||
|
*/
|
||
|
int main() {
|
||
|
test(); // Run self-test implementation.
|
||
|
return 0;
|
||
|
}
|