TheAlgorithms-C-Plus-Plus/graph/hopcroft_karp.cpp

326 lines
9.9 KiB
C++
Raw Normal View History

Hopcroft–Karp algorithm implementation (#1087) * Hopcroft–Karp algorithm implementation The Hopcroft–Karp algorithm is an algorithm that takes as input a bipartite graph and produces as output a maximum cardinality matching. * Update hopcroft_karp.cpp * fix : fixed the issues * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update hopcroft_karp.cpp Added Global variable as private variable * Update hopcroft_karp.cpp * Update hopcroft_karp.cpp * Update hopcroft_karp.cpp * Update hopcroft_karp.cpp * Update hopcroft_karp.cpp * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update hopcroft_karp.cpp * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * updating DIRECTORY.md * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-tidy fixes for 780580f71fd7245da9ec27aa54c35fca6793883d * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * clang-tidy fixes for 03f97cb241e520c6ed6bb4427ca9977c26c303c6 * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: David Leal <halfpacho@gmail.com> * Update graph/hopcroft_karp.cpp Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * Update graph/hopcroft_karp.cpp Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * Update graph/hopcroft_karp.cpp Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * Update graph/hopcroft_karp.cpp Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * applied suggested changes Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * Update graph/hopcroft_karp.cpp Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * applied changes Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * Update graph/hopcroft_karp.cpp Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * improved documentation Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * Update graph/hopcroft_karp.cpp Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * Update graph/hopcroft_karp.cpp Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * Update hopcroft_karp.cpp * corrected code * Update hopcroft_karp.cpp * changed the class name * applied suggested changes included the HKGraph class and it's member functions inside namespace graph * Update graph/hopcroft_karp.cpp Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * Update hopcroft_karp.cpp * Update hopcroft_karp.cpp * added sample test cases * Update DIRECTORY.md Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * Update DIRECTORY.md Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com> * updating DIRECTORY.md Co-authored-by: David Leal <halfpacho@gmail.com> Co-authored-by: @8848hg <53469557+Himalay12@users.noreply.github.com> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Krishna Vedala <7001608+kvedala@users.noreply.github.com>
2020-10-16 20:41:51 +08:00
/**
* @file
* @brief Implementation of [HopcroftKarp](https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm) algorithm.
* @details
* The HopcroftKarp algorithm is an algorithm that takes as input a bipartite graph
* and produces as output a maximum cardinality matching, it runs in O(EV) time in worst case.
*
* ### Bipartite graph
* A bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint
* and independent sets U and V such that every edge connects a vertex in U to one in V.
* Vertex sets U and V are usually called the parts of the graph.
* Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.
*
* ### Matching and Not-Matching edges
* Given a matching M, edges that are part of matching are called Matching edges and edges that are not part
* of M (or connect free nodes) are called Not-Matching edges.
*
* ### Maximum cardinality matching
* Given a bipartite graphs G = ( V = ( X , Y ) , E ) whose partition has the parts X and Y,
* with E denoting the edges of the graph, the goal is to find a matching with as many edges as possible.
* Equivalently, a matching that covers as many vertices as possible.
*
* ### Augmenting paths
* Given a matching M, an augmenting path is an alternating path that starts from and ends on free vertices.
* All single edge paths that start and end with free vertices are augmenting paths.
*
*
* ### Concept
* A matching M is not maximum if there exists an augmenting path. It is also true other way,
* i.e, a matching is maximum if no augmenting path exists.
*
*
* ### Algorithm
* 1) Initialize the Maximal Matching M as empty.
* 2) While there exists an Augmenting Path P
* Remove matching edges of P from M and add not-matching edges of P to M
* (This increases size of M by 1 as P starts and ends with a free vertex
* i.e. a node that is not part of matching.)
* 3) Return M.
*
*
*
* @author [Krishna Pal Deora](https://github.com/Krishnapal4050)
*
*/
#include <iostream>
#include <cstdlib>
#include <queue>
#include <list>
#include <climits>
#include <memory>
#include <cassert>
/**
* @namespace graph
* @brief Graph algorithms
*/
namespace graph {
/**
* @brief Represents Bipartite graph for
* Hopcroft Karp implementation
*/
class HKGraph
{
int m{}; ///< m is the number of vertices on left side of Bipartite Graph
int n{}; ///< n is the number of vertices on right side of Bipartite Graph
const int NIL{0};
const int INF{INT_MAX};
std::vector<std::list<int> >adj; ///< adj[u] stores adjacents of left side and 0 is used for dummy vertex
std::vector<int> pair_u; ///< value of vertex 'u' ranges from 1 to m
std::vector<int> pair_v; ///< value of vertex 'v' ranges from 1 to n
std::vector<int> dist; ///< dist represents the distance between vertex 'u' and vertex 'v'
public:
HKGraph(); // Default Constructor
HKGraph(int m, int n); // Constructor
void addEdge(int u, int v); // To add edge
bool bfs(); // Returns true if there is an augmenting path
bool dfs(int u); // Adds augmenting path if there is one beginning with u
int hopcroftKarpAlgorithm(); // Returns size of maximum matching
};
/**
* @brief This function counts the number of augmenting paths between left and right sides of the Bipartite graph
* @returns size of maximum matching
*/
int HKGraph::hopcroftKarpAlgorithm()
{
// pair_u[u] stores pair of u in matching on left side of Bipartite Graph.
// If u doesn't have any pair, then pair_u[u] is NIL
pair_u = std::vector<int>(m + 1,NIL);
// pair_v[v] stores pair of v in matching on right side of Biparite Graph.
// If v doesn't have any pair, then pair_u[v] is NIL
pair_v = std::vector<int>(n + 1,NIL);
dist = std::vector<int>(m + 1); // dist[u] stores distance of left side vertices
int result = 0; // Initialize result
// Keep updating the result while there is an augmenting path possible.
while (bfs())
{
// Find a free vertex to check for a matching
for (int u = 1; u <= m; u++){
// If current vertex is free and there is
// an augmenting path from current vertex
// then increment the result
if (pair_u[u] == NIL && dfs(u)){
result++;
}
}
}
return result;
}
/**
* @brief This function checks for the possibility of augmented path availability
* @returns `true` if there is an augmenting path available
* @returns `false` if there is no augmenting path available
*/
bool HKGraph::bfs()
{
std::queue<int> q; // an integer queue for bfs
// First layer of vertices (set distance as 0)
for (int u = 1; u <= m; u++)
{
// If this is a free vertex, add it to queue
if (pair_u[u] == NIL){
dist[u] = 0; // u is not matched so distance is 0
q.push(u);
}
else{
dist[u] = INF; // set distance as infinite so that this vertex is considered next time for availibility
}
}
dist[NIL] = INF; // Initialize distance to NIL as infinite
// q is going to contain vertices of left side only.
while (!q.empty())
{
int u = q.front(); // dequeue a vertex
q.pop();
// If this node is not NIL and can provide a shorter path to NIL then
if (dist[u] < dist[NIL])
{
// Get all the adjacent vertices of the dequeued vertex u
std::list<int>::iterator it;
for (it = adj[u].begin(); it != adj[u].end(); ++it)
{
int v = *it;
// If pair of v is not considered so far i.e. (v, pair_v[v]) is not yet explored edge.
if (dist[pair_v[v]] == INF)
{
dist[pair_v[v]] = dist[u] + 1;
q.push(pair_v[v]); // Consider the pair and push it to queue
}
}
}
}
return (dist[NIL] != INF); // If we could come back to NIL using alternating path of distinct vertices then there is an augmenting path available
}
/**
* @brief This functions checks whether an augmenting path is available exists beginning with free vertex u
* @param u represents position of vertex
* @returns `true` if there is an augmenting path beginning with free vertex u
* @returns `false` if there is no augmenting path beginning with free vertex u
*/
bool HKGraph::dfs(int u)
{
if (u != NIL)
{
std::list<int>::iterator it;
for (it = adj[u].begin(); it != adj[u].end(); ++it)
{
int v = *it; // Adjacent vertex of u
// Follow the distances set by BFS search
if (dist[pair_v[v]] == dist[u] + 1)
{
// If dfs for pair of v also return true then new matching possible, store the matching
if (dfs(pair_v[v]) == true)
{
pair_v[v] = u;
pair_u[u] = v;
return true;
}
}
}
dist[u] = INF; // If there is no augmenting path beginning with u then set distance to infinite.
return false;
}
return true;
}
/**
* @brief Default Constructor for initialization
*/
HKGraph::HKGraph() = default;
/**
* @brief Constructor for initialization
* @param m is the number of vertices on left side of Bipartite Graph
* @param n is the number of vertices on right side of Bipartite Graph
*/
HKGraph::HKGraph(int m, int n) {
this->m = m;
this->n = n;
adj = std::vector<std::list<int> >(m + 1);
}
/**
* @brief function to add edge from u to v
* @param u is the position of first vertex
* @param v is the position of second vertex
*/
void HKGraph::addEdge(int u, int v)
{
adj[u].push_back(v); // Add v to us list.
}
} // namespace graph
using graph::HKGraph;
/**
* Self-test implementation
* @returns none
*/
void tests(){
// Sample test case 1
int v1a = 3, v1b = 5, e1 = 2; // vertices of left side, right side and edges
HKGraph g1(v1a, v1b); // execute the algorithm
g1.addEdge(0,1);
g1.addEdge(1,4);
int expected_res1 = 0; // for the above sample data, this is the expected output
int res1 = g1.hopcroftKarpAlgorithm();
assert(res1 == expected_res1); // assert check to ensure that the algorithm executed correctly for test 1
// Sample test case 2
int v2a = 4, v2b = 4, e2 = 6; // vertices of left side, right side and edges
HKGraph g2(v2a, v2b); // execute the algorithm
g2.addEdge(1,1);
g2.addEdge(1,3);
g2.addEdge(2,3);
g2.addEdge(3,4);
g2.addEdge(4,3);
g2.addEdge(4,2);
int expected_res2 = 0; // for the above sample data, this is the expected output
int res2 = g2.hopcroftKarpAlgorithm();
assert(res2 == expected_res2); // assert check to ensure that the algorithm executed correctly for test 2
// Sample test case 3
int v3a = 6, v3b = 6, e3 = 4; // vertices of left side, right side and edges
HKGraph g3(v3a, v3b); // execute the algorithm
g3.addEdge(0,1);
g3.addEdge(1,4);
g3.addEdge(1,5);
g3.addEdge(5,0);
int expected_res3 = 0; // for the above sample data, this is the expected output
int res3 = g3.hopcroftKarpAlgorithm();
assert(res3 == expected_res3); // assert check to ensure that the algorithm executed correctly for test 3
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main()
{
tests(); // perform self-tests
int v1 = 0, v2 = 0, e = 0;
std::cin >> v1 >> v2 >> e; // vertices of left side, right side and edges
HKGraph g(v1, v2);
int u = 0, v = 0;
for (int i = 0; i < e; ++i)
{
std::cin >> u >> v;
g.addEdge(u, v);
}
int res = g.hopcroftKarpAlgorithm();
std::cout << "Maximum matching is " << res <<"\n";
return 0;
}