2020-07-17 22:22:16 +08:00
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
* @brief [Graph Dijkstras Shortest Path Algorithm
|
|
|
|
* (Dijkstra's Shortest Path)]
|
|
|
|
* (https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm)
|
|
|
|
*
|
|
|
|
* @author [Ayaan Khan](http://github.com/ayaankhan98)
|
|
|
|
*
|
|
|
|
* @details
|
|
|
|
* Dijkstra's Algorithm is used to find the shortest path from a source
|
|
|
|
* vertex to all other reachable vertex in the graph.
|
|
|
|
* The algorithm initially assumes all the nodes are unreachable from the
|
|
|
|
* given source vertex so we mark the distances of all vertices as INF
|
|
|
|
* (infinity) from source vertex (INF / infinity denotes unable to reach).
|
|
|
|
*
|
|
|
|
* in similar fashion with BFS we assume the distance of source vertex as 0
|
|
|
|
* and pushes the vertex in a priority queue with it's distance.
|
|
|
|
* we maintain the priority queue as a min heap so that we can get the
|
|
|
|
* minimum element at the top of heap
|
|
|
|
*
|
|
|
|
* Basically what we do in this algorithm is that we try to minimize the
|
|
|
|
* distances of all the reachable vertices from the current vertex, look
|
|
|
|
* at the code below to understand in better way.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
#include <cassert>
|
2017-12-28 22:26:35 +08:00
|
|
|
#include <iostream>
|
2020-07-17 23:20:20 +08:00
|
|
|
#include <limits>
|
2020-06-20 00:04:56 +08:00
|
|
|
#include <queue>
|
2020-07-17 22:22:16 +08:00
|
|
|
#include <utility>
|
2020-06-20 00:04:56 +08:00
|
|
|
#include <vector>
|
2020-07-17 22:22:16 +08:00
|
|
|
|
2020-07-17 23:19:00 +08:00
|
|
|
constexpr long long INF = std::numeric_limits<long long>::max();
|
2020-07-17 22:22:16 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* @namespace graph
|
|
|
|
* @brief Graph Algorithms
|
|
|
|
*/
|
|
|
|
|
|
|
|
namespace graph {
|
2020-07-17 22:27:01 +08:00
|
|
|
/**
|
|
|
|
* @brief Function that add edge between two nodes or vertices of graph
|
|
|
|
*
|
|
|
|
* @param u any node or vertex of graph
|
|
|
|
* @param v any node or vertex of graph
|
|
|
|
*/
|
|
|
|
void addEdge(std::vector<std::vector<std::pair<int, int>>> *adj, int u, int v,
|
|
|
|
int w) {
|
2020-07-17 22:22:16 +08:00
|
|
|
(*adj)[u - 1].push_back(std::make_pair(v - 1, w));
|
|
|
|
// (*adj)[v - 1].push_back(std::make_pair(u - 1, w));
|
2020-07-17 22:27:01 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Function runs the dijkstra algorithm for some source vertex and
|
|
|
|
* target vertex in the graph and returns the shortest distance of target
|
|
|
|
* from the source.
|
|
|
|
*
|
|
|
|
* @param adj input graph
|
|
|
|
* @param s source vertex
|
|
|
|
* @param t target vertex
|
|
|
|
*
|
|
|
|
* @return shortest distance if target is reachable from source else -1 in
|
|
|
|
* case if target is not reachable from source.
|
|
|
|
*/
|
|
|
|
int dijkstra(std::vector<std::vector<std::pair<int, int>>> *adj, int s, int t) {
|
2020-07-17 22:22:16 +08:00
|
|
|
/// n denotes the number of vertices in graph
|
|
|
|
int n = adj->size();
|
|
|
|
|
|
|
|
/// setting all the distances initially to INF
|
2020-07-17 23:19:00 +08:00
|
|
|
std::vector<long long> dist(n, INF);
|
2020-07-17 22:22:16 +08:00
|
|
|
|
|
|
|
/// creating a min heap using priority queue
|
|
|
|
/// first element of pair contains the distance
|
|
|
|
/// second element of pair contains the vertex
|
|
|
|
std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>,
|
2020-07-17 22:27:01 +08:00
|
|
|
std::greater<std::pair<int, int>>>
|
2020-06-20 00:04:56 +08:00
|
|
|
pq;
|
2020-07-17 22:27:01 +08:00
|
|
|
|
2020-07-17 22:22:16 +08:00
|
|
|
/// pushing the source vertex 's' with 0 distance in min heap
|
|
|
|
pq.push(std::make_pair(0, s));
|
|
|
|
|
|
|
|
/// marking the distance of source as 0
|
|
|
|
dist[s] = 0;
|
|
|
|
|
2020-06-20 00:04:56 +08:00
|
|
|
while (!pq.empty()) {
|
2020-07-17 22:27:01 +08:00
|
|
|
/// second element of pair denotes the node / vertex
|
|
|
|
int currentNode = pq.top().second;
|
|
|
|
|
|
|
|
/// first element of pair denotes the distance
|
|
|
|
int currentDist = pq.top().first;
|
|
|
|
|
|
|
|
pq.pop();
|
|
|
|
|
|
|
|
/// for all the reachable vertex from the currently exploring vertex
|
|
|
|
/// we will try to minimize the distance
|
|
|
|
for (std::pair<int, int> edge : (*adj)[currentNode]) {
|
|
|
|
/// minimizing distances
|
|
|
|
if (currentDist + edge.second < dist[edge.first]) {
|
|
|
|
dist[edge.first] = currentDist + edge.second;
|
|
|
|
pq.push(std::make_pair(dist[edge.first], edge.first));
|
|
|
|
}
|
2017-10-14 00:07:47 +08:00
|
|
|
}
|
|
|
|
}
|
2020-07-17 22:22:16 +08:00
|
|
|
if (dist[t] != INF) {
|
2020-07-17 22:27:01 +08:00
|
|
|
return dist[t];
|
2017-10-14 00:07:47 +08:00
|
|
|
}
|
2020-07-17 22:22:16 +08:00
|
|
|
return -1;
|
2020-07-17 22:27:01 +08:00
|
|
|
}
|
|
|
|
} // namespace graph
|
2020-07-17 22:22:16 +08:00
|
|
|
|
|
|
|
/** Function to test the Algorithm */
|
|
|
|
void tests() {
|
2020-07-17 22:27:01 +08:00
|
|
|
std::cout << "Initiatinig Predefined Tests..." << std::endl;
|
|
|
|
std::cout << "Initiating Test 1..." << std::endl;
|
|
|
|
std::vector<std::vector<std::pair<int, int>>> adj1(
|
|
|
|
4, std::vector<std::pair<int, int>>());
|
|
|
|
graph::addEdge(&adj1, 1, 2, 1);
|
|
|
|
graph::addEdge(&adj1, 4, 1, 2);
|
|
|
|
graph::addEdge(&adj1, 2, 3, 2);
|
|
|
|
graph::addEdge(&adj1, 1, 3, 5);
|
|
|
|
|
|
|
|
int s = 1, t = 3;
|
|
|
|
assert(graph::dijkstra(&adj1, s - 1, t - 1) == 3);
|
|
|
|
std::cout << "Test 1 Passed..." << std::endl;
|
|
|
|
|
|
|
|
s = 4, t = 3;
|
|
|
|
std::cout << "Initiating Test 2..." << std::endl;
|
|
|
|
assert(graph::dijkstra(&adj1, s - 1, t - 1) == 5);
|
|
|
|
std::cout << "Test 2 Passed..." << std::endl;
|
|
|
|
|
|
|
|
std::vector<std::vector<std::pair<int, int>>> adj2(
|
|
|
|
5, std::vector<std::pair<int, int>>());
|
|
|
|
graph::addEdge(&adj2, 1, 2, 4);
|
|
|
|
graph::addEdge(&adj2, 1, 3, 2);
|
|
|
|
graph::addEdge(&adj2, 2, 3, 2);
|
|
|
|
graph::addEdge(&adj2, 3, 2, 1);
|
|
|
|
graph::addEdge(&adj2, 2, 4, 2);
|
|
|
|
graph::addEdge(&adj2, 3, 5, 4);
|
|
|
|
graph::addEdge(&adj2, 5, 4, 1);
|
|
|
|
graph::addEdge(&adj2, 2, 5, 3);
|
|
|
|
graph::addEdge(&adj2, 3, 4, 4);
|
|
|
|
|
|
|
|
s = 1, t = 5;
|
|
|
|
std::cout << "Initiating Test 3..." << std::endl;
|
|
|
|
assert(graph::dijkstra(&adj2, s - 1, t - 1) == 6);
|
|
|
|
std::cout << "Test 3 Passed..." << std::endl;
|
|
|
|
std::cout << "All Test Passed..." << std::endl << std::endl;
|
2020-07-17 22:22:16 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/** Main function */
|
2020-07-17 22:27:01 +08:00
|
|
|
int main() {
|
|
|
|
// running predefined tests
|
|
|
|
tests();
|
|
|
|
|
|
|
|
int vertices, edges;
|
|
|
|
std::cout << "Enter the number of vertices : ";
|
|
|
|
std::cin >> vertices;
|
|
|
|
std::cout << "Enter the number of edges : ";
|
|
|
|
std::cin >> edges;
|
|
|
|
|
|
|
|
std::vector<std::vector<std::pair<int, int>>> adj(
|
|
|
|
vertices, std::vector<std::pair<int, int>>());
|
|
|
|
|
|
|
|
int u, v, w;
|
|
|
|
while (edges--) {
|
|
|
|
std::cin >> u >> v >> w;
|
|
|
|
graph::addEdge(&adj, u, v, w);
|
|
|
|
}
|
|
|
|
|
|
|
|
int s, t;
|
|
|
|
std::cin >> s >> t;
|
|
|
|
int dist = graph::dijkstra(&adj, s - 1, t - 1);
|
|
|
|
if (dist == -1) {
|
|
|
|
std::cout << "Target not reachable from source" << std::endl;
|
|
|
|
} else {
|
|
|
|
std::cout << "Shortest Path Distance : " << dist << std::endl;
|
|
|
|
}
|
|
|
|
return 0;
|
2017-10-14 00:07:47 +08:00
|
|
|
}
|