TheAlgorithms-C-Plus-Plus/ternary_search.cpp

117 lines
2.7 KiB
C++
Raw Normal View History

2017-10-09 09:19:59 +08:00
/*
* This is a divide and conquer algorithm.
* It does this by dividing the search space by 3 parts and
* using its property (usually monotonic property) to find
* the desired index.
*
* Time Complexity : O(log3 n)
* Space Complexity : O(1) (without the array)
*/
#include <iostream>
using namespace std;
/*
* The absolutePrecision can be modified to fit preference but
* it is recommended to not go lower than 10 due to errors that
* may occur.
*
* The value of _target should be decided or can be decided later
* by using the variable of the function.
*/
#define _target 10
#define absolutePrecision 10
#define MAX 10000000
int N = 21;
int A[MAX] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,4,10};
/*
* get_input function is to receive input from standard IO
*/
void get_input()
{
// TODO: Get input from STDIO or write input to memory as done above.
}
/*
* This is the iterative method of the ternary search which returns the index of the element.
*/
int it_ternary_search(int left, int right, int A[],int target)
{
while (1)
{
if(left<right)
{
if(right-left < absolutePrecision)
{
for(int i=left;i<=right;i++)
if(A[i] == target) return i;
return -1;
}
int oneThird = (left+right)/3+1;
int twoThird = (left+right)*2/3+1;
if(A[oneThird] == target) return oneThird;
else if(A[twoThird] == target) return twoThird;
else if(target > A[twoThird]) left = twoThird+1;
else if(target < A[oneThird]) right = oneThird-1;
else left = oneThird+1, right = twoThird-1;
}
else return -1;
}
}
/*
* This is the recursive method of the ternary search which returns the index of the element.
*/
int rec_ternary_search(int left, int right, int A[],int target)
{
if(left<right)
{
if(right-left < absolutePrecision)
{
for(int i=left;i<=right;i++)
if(A[i] == target) return i;
return -1;
}
int oneThird = (left+right)/3+1;
int twoThird = (left+right)*2/3+1;
if(A[oneThird] == target) return oneThird;
if(A[twoThird] == target) return twoThird;
if(target < A[oneThird]) return rec_ternary_search(left, oneThird-1, A, target);
if(target > A[twoThird]) return rec_ternary_search(twoThird+1, right, A, target);
return rec_ternary_search(oneThird+1, twoThird-1, A, target);
}
else return -1;
}
/*
* ternary_search is a template function
* You could either use it_ternary_search or rec_ternary_search according to preference.
*/
void ternary_search(int N,int A[],int target)
{
cout << it_ternary_search(0,N-1,A,target) << '\t';
cout << rec_ternary_search(0,N-1,A,target) << '\t';
cout << '\n';
}
int main()
{
get_input();
ternary_search(N,A,_target);
return 0;
}