TheAlgorithms-C-Plus-Plus/dynamic_programming/Matrix-Chain-Multiplication.cpp

62 lines
1.5 KiB
C++
Raw Normal View History

2019-07-31 01:10:44 +08:00
#include <iostream>
#include <climits>
using namespace std;
#define MAX 10
// dp table to store the solution for already computed sub problems
int dp[MAX][MAX];
// Function to find the most efficient way to multiply the given sequence of matrices
int MatrixChainMultiplication(int dim[], int i, int j)
{
// base case: one matrix
if (j <= i + 1)
return 0;
// stores minimum number of scalar multiplications (i.e., cost)
// needed to compute the matrix M[i+1]...M[j] = M[i..j]
int min = INT_MAX;
2019-08-21 10:10:08 +08:00
// if dp[i][j] is not calculated (calculate it!!)
2019-07-31 01:10:44 +08:00
if (dp[i][j] == 0)
{
// take the minimum over each possible position at which the
// sequence of matrices can be split
for (int k = i + 1; k <= j - 1; k++)
{
// recur for M[i+1]..M[k] to get a i x k matrix
int cost = MatrixChainMultiplication(dim, i, k);
// recur for M[k+1]..M[j] to get a k x j matrix
cost += MatrixChainMultiplication(dim, k, j);
// cost to multiply two (i x k) and (k x j) matrix
2019-08-21 10:10:08 +08:00
cost += dim[i] * dim[k] * dim[j];
2019-07-31 01:10:44 +08:00
if (cost < min)
min = cost; // store the minimum cost
}
dp[i][j] = min;
}
// return min cost to multiply M[j+1]..M[j]
return dp[i][j];
}
// main function
int main()
{
// Matrix i has Dimensions dim[i-1] & dim[i] for i=1..n
// input is 10 x 30 matrix, 30 x 5 matrix, 5 x 60 matrix
2019-08-21 10:10:08 +08:00
int dim[] = {10, 30, 5, 60};
2019-07-31 01:10:44 +08:00
int n = sizeof(dim) / sizeof(dim[0]);
// Function Calling: MatrixChainMultiplications(dimensions_array, starting, ending);
cout << "Minimum cost is " << MatrixChainMultiplication(dim, 0, n - 1) << "\n";
return 0;
}