mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
294 lines
11 KiB
C++
294 lines
11 KiB
C++
|
/**
|
||
|
* @file
|
||
|
* @brief [Bidirectional Dijkstra Shortest Path Algorithm]
|
||
|
* (https://www.coursera.org/learn/algorithms-on-graphs/lecture/7ml18/bidirectional-dijkstra)
|
||
|
*
|
||
|
* @author [Marinovksy](http://github.com/Marinovsky)
|
||
|
*
|
||
|
* @details
|
||
|
* This is basically the same Dijkstra Algorithm but faster because it goes from
|
||
|
* the source to the target and from target to the source and stops when
|
||
|
* finding a vertex visited already by the direct search or the reverse one.
|
||
|
* Here some simulations of it:
|
||
|
* https://www.youtube.com/watch?v=DINCL5cd_w0&t=24s
|
||
|
*/
|
||
|
|
||
|
#include <cassert> /// for assert
|
||
|
#include <iostream> /// for io operations
|
||
|
#include <limits> /// for variable INF
|
||
|
#include <queue> /// for the priority_queue of distances
|
||
|
#include <utility> /// for make_pair function
|
||
|
#include <vector> /// for store the graph, the distances, and the path
|
||
|
|
||
|
constexpr int64_t INF = std::numeric_limits<int64_t>::max();
|
||
|
|
||
|
/**
|
||
|
* @namespace graph
|
||
|
* @brief Graph Algorithms
|
||
|
*/
|
||
|
namespace graph {
|
||
|
/**
|
||
|
* @namespace bidirectional_dijkstra
|
||
|
* @brief Functions for [Bidirectional Dijkstra Shortest Path]
|
||
|
* (https://www.coursera.org/learn/algorithms-on-graphs/lecture/7ml18/bidirectional-dijkstra)
|
||
|
* algorithm
|
||
|
*/
|
||
|
namespace bidirectional_dijkstra {
|
||
|
/**
|
||
|
* @brief Function that add edge between two nodes or vertices of graph
|
||
|
*
|
||
|
* @param adj1 adjacency list for the direct search
|
||
|
* @param adj2 adjacency list for the reverse search
|
||
|
* @param u any node or vertex of graph
|
||
|
* @param v any node or vertex of graph
|
||
|
*/
|
||
|
void addEdge(std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj1,
|
||
|
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj2,
|
||
|
uint64_t u, uint64_t v, uint64_t w) {
|
||
|
(*adj1)[u - 1].push_back(std::make_pair(v - 1, w));
|
||
|
(*adj2)[v - 1].push_back(std::make_pair(u - 1, w));
|
||
|
// (*adj)[v - 1].push_back(std::make_pair(u - 1, w));
|
||
|
}
|
||
|
/**
|
||
|
* @brief This function returns the shortest distance from the source
|
||
|
* to the target if there is path between vertices 's' and 't'.
|
||
|
*
|
||
|
* @param workset_ vertices visited in the search
|
||
|
* @param distance_ vector of distances from the source to the target and
|
||
|
* from the target to the source
|
||
|
*
|
||
|
*/
|
||
|
uint64_t Shortest_Path_Distance(
|
||
|
const std::vector<uint64_t> &workset_,
|
||
|
const std::vector<std::vector<uint64_t>> &distance_) {
|
||
|
int64_t distance = INF;
|
||
|
for (uint64_t i : workset_) {
|
||
|
if (distance_[0][i] + distance_[1][i] < distance) {
|
||
|
distance = distance_[0][i] + distance_[1][i];
|
||
|
}
|
||
|
}
|
||
|
return distance;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Function runs the dijkstra algorithm for some source vertex and
|
||
|
* target vertex in the graph and returns the shortest distance of target
|
||
|
* from the source.
|
||
|
*
|
||
|
* @param adj1 input graph
|
||
|
* @param adj2 input graph reversed
|
||
|
* @param s source vertex
|
||
|
* @param t target vertex
|
||
|
*
|
||
|
* @return shortest distance if target is reachable from source else -1 in
|
||
|
* case if target is not reachable from source.
|
||
|
*/
|
||
|
int Bidijkstra(std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj1,
|
||
|
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> *adj2,
|
||
|
uint64_t s, uint64_t t) {
|
||
|
/// n denotes the number of vertices in graph
|
||
|
uint64_t n = adj1->size();
|
||
|
|
||
|
/// setting all the distances initially to INF
|
||
|
std::vector<std::vector<uint64_t>> dist(2, std::vector<uint64_t>(n, INF));
|
||
|
|
||
|
/// creating a a vector of min heap using priority queue
|
||
|
/// pq[0] contains the min heap for the direct search
|
||
|
/// pq[1] contains the min heap for the reverse search
|
||
|
|
||
|
/// first element of pair contains the distance
|
||
|
/// second element of pair contains the vertex
|
||
|
std::vector<
|
||
|
std::priority_queue<std::pair<uint64_t, uint64_t>,
|
||
|
std::vector<std::pair<uint64_t, uint64_t>>,
|
||
|
std::greater<std::pair<uint64_t, uint64_t>>>>
|
||
|
pq(2);
|
||
|
/// vector for store the nodes or vertices in the shortest path
|
||
|
std::vector<uint64_t> workset(n);
|
||
|
/// vector for store the nodes or vertices visited
|
||
|
std::vector<bool> visited(n);
|
||
|
|
||
|
/// pushing the source vertex 's' with 0 distance in pq[0] min heap
|
||
|
pq[0].push(std::make_pair(0, s));
|
||
|
|
||
|
/// marking the distance of source as 0
|
||
|
dist[0][s] = 0;
|
||
|
|
||
|
/// pushing the target vertex 't' with 0 distance in pq[1] min heap
|
||
|
pq[1].push(std::make_pair(0, t));
|
||
|
|
||
|
/// marking the distance of target as 0
|
||
|
dist[1][t] = 0;
|
||
|
|
||
|
while (true) {
|
||
|
/// direct search
|
||
|
|
||
|
// If pq[0].size() is equal to zero then the node/ vertex is not
|
||
|
// reachable from s
|
||
|
if (pq[0].size() == 0) {
|
||
|
break;
|
||
|
}
|
||
|
/// second element of pair denotes the node / vertex
|
||
|
uint64_t currentNode = pq[0].top().second;
|
||
|
|
||
|
/// first element of pair denotes the distance
|
||
|
uint64_t currentDist = pq[0].top().first;
|
||
|
|
||
|
pq[0].pop();
|
||
|
|
||
|
/// for all the reachable vertex from the currently exploring vertex
|
||
|
/// we will try to minimize the distance
|
||
|
for (std::pair<int, int> edge : (*adj1)[currentNode]) {
|
||
|
/// minimizing distances
|
||
|
if (currentDist + edge.second < dist[0][edge.first]) {
|
||
|
dist[0][edge.first] = currentDist + edge.second;
|
||
|
pq[0].push(std::make_pair(dist[0][edge.first], edge.first));
|
||
|
}
|
||
|
}
|
||
|
// store the processed node/ vertex
|
||
|
workset.push_back(currentNode);
|
||
|
|
||
|
/// check if currentNode has already been visited
|
||
|
if (visited[currentNode] == 1) {
|
||
|
return Shortest_Path_Distance(workset, dist);
|
||
|
}
|
||
|
visited[currentNode] = true;
|
||
|
/// reversed search
|
||
|
|
||
|
// If pq[1].size() is equal to zero then the node/ vertex is not
|
||
|
// reachable from t
|
||
|
if (pq[1].size() == 0) {
|
||
|
break;
|
||
|
}
|
||
|
/// second element of pair denotes the node / vertex
|
||
|
currentNode = pq[1].top().second;
|
||
|
|
||
|
/// first element of pair denotes the distance
|
||
|
currentDist = pq[1].top().first;
|
||
|
|
||
|
pq[1].pop();
|
||
|
|
||
|
/// for all the reachable vertex from the currently exploring vertex
|
||
|
/// we will try to minimize the distance
|
||
|
for (std::pair<int, int> edge : (*adj2)[currentNode]) {
|
||
|
/// minimizing distances
|
||
|
if (currentDist + edge.second < dist[1][edge.first]) {
|
||
|
dist[1][edge.first] = currentDist + edge.second;
|
||
|
pq[1].push(std::make_pair(dist[1][edge.first], edge.first));
|
||
|
}
|
||
|
}
|
||
|
// store the processed node/ vertex
|
||
|
workset.push_back(currentNode);
|
||
|
|
||
|
/// check if currentNode has already been visited
|
||
|
if (visited[currentNode] == 1) {
|
||
|
return Shortest_Path_Distance(workset, dist);
|
||
|
}
|
||
|
visited[currentNode] = true;
|
||
|
}
|
||
|
return -1;
|
||
|
}
|
||
|
} // namespace bidirectional_dijkstra
|
||
|
} // namespace graph
|
||
|
|
||
|
/**
|
||
|
* @brief Function to test the
|
||
|
* provided algorithm above
|
||
|
* @returns void
|
||
|
*/
|
||
|
static void tests() {
|
||
|
std::cout << "Initiatinig Predefined Tests..." << std::endl;
|
||
|
std::cout << "Initiating Test 1..." << std::endl;
|
||
|
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj1_1(
|
||
|
4, std::vector<std::pair<uint64_t, uint64_t>>());
|
||
|
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj1_2(
|
||
|
4, std::vector<std::pair<uint64_t, uint64_t>>());
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 1, 2, 1);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 4, 1, 2);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 2, 3, 2);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj1_1, &adj1_2, 1, 3, 5);
|
||
|
|
||
|
uint64_t s = 1, t = 3;
|
||
|
assert(graph::bidirectional_dijkstra::Bidijkstra(&adj1_1, &adj1_2, s - 1,
|
||
|
t - 1) == 3);
|
||
|
std::cout << "Test 1 Passed..." << std::endl;
|
||
|
|
||
|
s = 4, t = 3;
|
||
|
std::cout << "Initiating Test 2..." << std::endl;
|
||
|
assert(graph::bidirectional_dijkstra::Bidijkstra(&adj1_1, &adj1_2, s - 1,
|
||
|
t - 1) == 5);
|
||
|
std::cout << "Test 2 Passed..." << std::endl;
|
||
|
|
||
|
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj2_1(
|
||
|
5, std::vector<std::pair<uint64_t, uint64_t>>());
|
||
|
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj2_2(
|
||
|
5, std::vector<std::pair<uint64_t, uint64_t>>());
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 1, 2, 4);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 1, 3, 2);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 3, 2);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 2, 1);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 4, 2);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 5, 4);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 5, 4, 1);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 2, 5, 3);
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj2_1, &adj2_2, 3, 4, 4);
|
||
|
|
||
|
s = 1, t = 5;
|
||
|
std::cout << "Initiating Test 3..." << std::endl;
|
||
|
assert(graph::bidirectional_dijkstra::Bidijkstra(&adj2_1, &adj2_2, s - 1,
|
||
|
t - 1) == 6);
|
||
|
std::cout << "Test 3 Passed..." << std::endl;
|
||
|
std::cout << "All Test Passed..." << std::endl << std::endl;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Main function
|
||
|
* @returns 0 on exit
|
||
|
*/
|
||
|
int main() {
|
||
|
tests(); // running predefined tests
|
||
|
uint64_t vertices = uint64_t();
|
||
|
uint64_t edges = uint64_t();
|
||
|
std::cout << "Enter the number of vertices : ";
|
||
|
std::cin >> vertices;
|
||
|
std::cout << "Enter the number of edges : ";
|
||
|
std::cin >> edges;
|
||
|
|
||
|
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj1(
|
||
|
vertices, std::vector<std::pair<uint64_t, uint64_t>>());
|
||
|
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> adj2(
|
||
|
vertices, std::vector<std::pair<uint64_t, uint64_t>>());
|
||
|
|
||
|
uint64_t u = uint64_t(), v = uint64_t(), w = uint64_t();
|
||
|
std::cout << "Enter the edges by three integers in this form: u v w "
|
||
|
<< std::endl;
|
||
|
std::cout << "Example: if there is and edge between node 1 and node 4 with "
|
||
|
"weight 7 enter: 1 4 7, and then press enter"
|
||
|
<< std::endl;
|
||
|
while (edges--) {
|
||
|
std::cin >> u >> v >> w;
|
||
|
graph::bidirectional_dijkstra::addEdge(&adj1, &adj2, u, v, w);
|
||
|
if (edges != 0) {
|
||
|
std::cout << "Enter the next edge" << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uint64_t s = uint64_t(), t = uint64_t();
|
||
|
std::cout
|
||
|
<< "Enter the source node and the target node separated by a space"
|
||
|
<< std::endl;
|
||
|
std::cout << "Example: If the source node is 5 and the target node is 6 "
|
||
|
"enter: 5 6 and press enter"
|
||
|
<< std::endl;
|
||
|
std::cin >> s >> t;
|
||
|
int dist =
|
||
|
graph::bidirectional_dijkstra::Bidijkstra(&adj1, &adj2, s - 1, t - 1);
|
||
|
if (dist == -1) {
|
||
|
std::cout << "Target not reachable from source" << std::endl;
|
||
|
} else {
|
||
|
std::cout << "Shortest Path Distance : " << dist << std::endl;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|