mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
107 lines
3.3 KiB
C++
107 lines
3.3 KiB
C++
|
/**
|
||
|
* @file
|
||
|
* @brief Implementation of the [Subset
|
||
|
* Sum](https://en.wikipedia.org/wiki/Subset_sum_problem) problem.
|
||
|
* @details
|
||
|
* We are given an array and a sum value. The algorithm finds all
|
||
|
* the subsets of that array with sum equal to the given sum and return such
|
||
|
* subsets count. This approach will have exponential time complexity.
|
||
|
* @author [Swastika Gupta](https://github.com/Swastyy)
|
||
|
*/
|
||
|
|
||
|
#include <cassert> /// for assert
|
||
|
#include <iostream> /// for IO operations
|
||
|
#include <vector> /// for std::vector
|
||
|
|
||
|
/**
|
||
|
* @namespace backtracking
|
||
|
* @brief Backtracking algorithms
|
||
|
*/
|
||
|
namespace backtracking {
|
||
|
/**
|
||
|
* @namespace Subsets
|
||
|
* @brief Functions for the [Subset
|
||
|
* Sum](https://en.wikipedia.org/wiki/Subset_sum_problem) problem.
|
||
|
*/
|
||
|
namespace subset_sum {
|
||
|
/**
|
||
|
* @brief The main function implements count of subsets
|
||
|
* @param sum is the required sum of any subset
|
||
|
* @param in_arr is the input array
|
||
|
* @returns count of the number of subsets with required sum
|
||
|
*/
|
||
|
uint64_t number_of_subsets(int32_t sum, const std::vector<int32_t> &in_arr) {
|
||
|
int32_t nelement = in_arr.size();
|
||
|
uint64_t count_of_subset = 0;
|
||
|
|
||
|
for (int32_t i = 0; i < (1 << (nelement)); i++) {
|
||
|
int32_t check = 0;
|
||
|
for (int32_t j = 0; j < nelement; j++) {
|
||
|
if (i & (1 << j)) {
|
||
|
check += (in_arr[j]);
|
||
|
}
|
||
|
}
|
||
|
if (check == sum) {
|
||
|
count_of_subset++;
|
||
|
}
|
||
|
}
|
||
|
return count_of_subset;
|
||
|
}
|
||
|
} // namespace subset_sum
|
||
|
} // namespace backtracking
|
||
|
|
||
|
/**
|
||
|
* @brief Test implementations
|
||
|
* @returns void
|
||
|
*/
|
||
|
static void test() {
|
||
|
// 1st test
|
||
|
std::cout << "1st test ";
|
||
|
std::vector<int32_t> array1 = {-7, -3, -2, 5, 8}; // input array
|
||
|
assert(backtracking::subset_sum::number_of_subsets(0, array1) ==
|
||
|
2); // first argument in subset_sum function is the required sum and
|
||
|
// second is the input array
|
||
|
std::cout << "passed" << std::endl;
|
||
|
|
||
|
// 2nd test
|
||
|
std::cout << "2nd test ";
|
||
|
std::vector<int32_t> array2 = {1, 2, 3, 3};
|
||
|
assert(backtracking::subset_sum::number_of_subsets(6, array2) ==
|
||
|
3); // here we are expecting 3 subsets which sum up to 6 i.e.
|
||
|
// {(1,2,3),(1,2,3),(3,3)}
|
||
|
std::cout << "passed" << std::endl;
|
||
|
|
||
|
// 3rd test
|
||
|
std::cout << "3rd test ";
|
||
|
std::vector<int32_t> array3 = {1, 1, 1, 1};
|
||
|
assert(backtracking::subset_sum::number_of_subsets(1, array3) ==
|
||
|
4); // here we are expecting 4 subsets which sum up to 1 i.e.
|
||
|
// {(1),(1),(1),(1)}
|
||
|
std::cout << "passed" << std::endl;
|
||
|
|
||
|
// 4th test
|
||
|
std::cout << "4th test ";
|
||
|
std::vector<int32_t> array4 = {3, 3, 3, 3};
|
||
|
assert(backtracking::subset_sum::number_of_subsets(6, array4) ==
|
||
|
6); // here we are expecting 6 subsets which sum up to 6 i.e.
|
||
|
// {(3,3),(3,3),(3,3),(3,3),(3,3),(3,3)}
|
||
|
std::cout << "passed" << std::endl;
|
||
|
|
||
|
// Test 5
|
||
|
std::cout << "5th test ";
|
||
|
std::vector<int32_t> array5 = {};
|
||
|
assert(backtracking::subset_sum::number_of_subsets(6, array5) ==
|
||
|
0); // here we are expecting 0 subsets which sum up to 6 i.e. we
|
||
|
// cannot select anything from an empty array
|
||
|
std::cout << "passed" << std::endl;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Main function
|
||
|
* @returns 0 on exit
|
||
|
*/
|
||
|
int main() {
|
||
|
test(); // run self-test implementations
|
||
|
return 0;
|
||
|
}
|