2021-03-26 00:30:03 +08:00
|
|
|
/**
|
|
|
|
* @brief
|
|
|
|
* [A* search algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm)
|
|
|
|
* @details
|
|
|
|
* A* is an informed search algorithm, or a best-first search, meaning that it
|
|
|
|
* is formulated in terms of weighted graphs: starting from a specific starting
|
|
|
|
* node of a graph (initial state), it aims to find a path to the given goal
|
|
|
|
* node having the smallest cost (least distance travelled, shortest time,
|
|
|
|
* etc.). It evaluates by maintaining a tree of paths originating at the start
|
|
|
|
* node and extending those paths one edge at a time until it reaches the final
|
|
|
|
* state.
|
|
|
|
* The weighted edges (or cost) is evaluated on two factors, G score
|
|
|
|
* (cost required from starting node or initial state to current state) and H
|
|
|
|
* score (cost required from current state to final state). The F(state), then
|
|
|
|
* is evaluated as:
|
|
|
|
* F(state) = G(state) + H(state).
|
|
|
|
*
|
|
|
|
* To solve the given search with shortest cost or path possible is to inspect
|
|
|
|
* values having minimum F(state).
|
|
|
|
* @author [Ashish Daulatabad](https://github.com/AshishYUO)
|
|
|
|
*/
|
|
|
|
#include <algorithm> /// for `std::reverse` function
|
|
|
|
#include <array> /// for `std::array`, representing `EightPuzzle` board
|
|
|
|
#include <cassert> /// for `assert`
|
|
|
|
#include <functional> /// for `std::function` STL
|
|
|
|
#include <iostream> /// for IO operations
|
|
|
|
#include <map> /// for `std::map` STL
|
2021-08-28 01:50:40 +08:00
|
|
|
#include <memory> /// for `std::shared_ptr`
|
2021-03-26 00:30:03 +08:00
|
|
|
#include <set> /// for `std::set` STL
|
|
|
|
#include <vector> /// for `std::vector` STL
|
|
|
|
/**
|
|
|
|
* @namespace machine_learning
|
|
|
|
* @brief Machine learning algorithms
|
|
|
|
*/
|
|
|
|
namespace machine_learning {
|
|
|
|
/**
|
|
|
|
* @namespace aystar_search
|
|
|
|
* @brief Functions for [A*
|
|
|
|
* Search](https://en.wikipedia.org/wiki/A*_search_algorithm) implementation.
|
|
|
|
*/
|
|
|
|
namespace aystar_search {
|
|
|
|
/**
|
|
|
|
* @class EightPuzzle
|
|
|
|
* @brief A class defining [EightPuzzle/15-Puzzle
|
|
|
|
* game](https://en.wikipedia.org/wiki/15_puzzle).
|
|
|
|
* @details
|
|
|
|
* A well known 3 x 3 puzzle of the form
|
|
|
|
* `
|
|
|
|
* 1 2 3
|
|
|
|
* 4 5 6
|
|
|
|
* 7 8 0
|
|
|
|
* `
|
|
|
|
* where `0` represents an empty space in the puzzle
|
|
|
|
* Given any random state, the goal is to achieve the above configuration
|
|
|
|
* (or any other configuration if possible)
|
|
|
|
* @tparam N size of the square Puzzle, default is set to 3 (since it is
|
|
|
|
* EightPuzzle)
|
|
|
|
*/
|
|
|
|
template <size_t N = 3>
|
|
|
|
class EightPuzzle {
|
|
|
|
std::array<std::array<uint32_t, N>, N>
|
|
|
|
board; /// N x N array to store the current state of the Puzzle.
|
|
|
|
|
2021-08-28 01:50:40 +08:00
|
|
|
std::vector<std::pair<int8_t, int8_t>> moves = {
|
2021-03-26 00:30:03 +08:00
|
|
|
{0, 1},
|
|
|
|
{1, 0},
|
|
|
|
{0, -1},
|
|
|
|
{-1,
|
|
|
|
0}}; /// A helper array to evaluate the next state from current state;
|
|
|
|
/**
|
|
|
|
* @brief Finds an empty space in puzzle (in this case; a zero)
|
|
|
|
* @returns a pair indicating integer distances from top and right
|
|
|
|
* respectively, else returns -1, -1
|
|
|
|
*/
|
|
|
|
std::pair<uint32_t, uint32_t> find_zero() {
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
|
|
for (size_t j = 0; j < N; ++j) {
|
|
|
|
if (!board[i][j]) {
|
|
|
|
return {i, j};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return {-1, -1};
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* @brief check whether the index value is bounded within the puzzle area
|
|
|
|
* @param value index for the current board
|
|
|
|
* @returns `true` if index is within the board, else `false`
|
|
|
|
*/
|
2021-08-28 01:50:40 +08:00
|
|
|
inline bool in_range(const uint32_t value) const { return value < N; }
|
2021-03-26 00:30:03 +08:00
|
|
|
|
|
|
|
public:
|
|
|
|
/**
|
|
|
|
* @brief get the value from i units from right and j units from left side
|
|
|
|
* of the board
|
|
|
|
* @param i integer denoting ith row
|
|
|
|
* @param j integer denoting column
|
|
|
|
* @returns non-negative integer denoting the value at ith row and jth
|
|
|
|
* column
|
|
|
|
* @returns -1 if invalid i or j position
|
|
|
|
*/
|
|
|
|
uint32_t get(size_t i, size_t j) const {
|
|
|
|
if (in_range(i) && in_range(j)) {
|
|
|
|
return board[i][j];
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* @brief Returns the current state of the board
|
|
|
|
*/
|
|
|
|
std::array<std::array<uint32_t, N>, N> get_state() { return board; }
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief returns the size of the EightPuzzle (number of row / column)
|
|
|
|
* @return N, the size of the puzzle.
|
|
|
|
*/
|
|
|
|
inline size_t get_size() const { return N; }
|
|
|
|
/**
|
|
|
|
* @brief Default constructor for EightPuzzle
|
|
|
|
*/
|
|
|
|
EightPuzzle() {
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
|
|
for (size_t j = 0; j < N; ++j) {
|
|
|
|
board[i][j] = ((i * 3 + j + 1) % (N * N));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* @brief Parameterized Constructor for EightPuzzle
|
|
|
|
* @param init a 2-dimensional array denoting a puzzle configuration
|
|
|
|
*/
|
|
|
|
explicit EightPuzzle(const std::array<std::array<uint32_t, N>, N> &init)
|
|
|
|
: board(init) {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Copy constructor
|
|
|
|
* @param A a reference of an EightPuzzle
|
|
|
|
*/
|
|
|
|
EightPuzzle(const EightPuzzle<N> &A) : board(A.board) {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Move constructor
|
|
|
|
* @param A a reference of an EightPuzzle
|
|
|
|
*/
|
|
|
|
EightPuzzle(const EightPuzzle<N> &&A) noexcept
|
|
|
|
: board(std::move(A.board)) {}
|
|
|
|
/**
|
|
|
|
* @brief Destructor of EightPuzzle
|
|
|
|
*/
|
|
|
|
~EightPuzzle() = default;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Copy assignment operator
|
|
|
|
* @param A a reference of an EightPuzzle
|
|
|
|
*/
|
|
|
|
EightPuzzle &operator=(const EightPuzzle &A) {
|
|
|
|
board = A.board;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Move assignment operator
|
|
|
|
* @param A a reference of an EightPuzzle
|
|
|
|
*/
|
|
|
|
EightPuzzle &operator=(EightPuzzle &&A) noexcept {
|
|
|
|
board = std::move(A.board);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Find all possible states after processing all possible
|
|
|
|
* moves, given the current state of the puzzle
|
|
|
|
* @returns list of vector containing all possible next moves
|
|
|
|
* @note the implementation is compulsory to create A* search
|
|
|
|
*/
|
|
|
|
std::vector<EightPuzzle<N>> generate_possible_moves() {
|
|
|
|
auto zero_pos = find_zero();
|
|
|
|
// vector which will contain all possible state from current state
|
|
|
|
std::vector<EightPuzzle<N>> NewStates;
|
|
|
|
for (auto &move : moves) {
|
|
|
|
if (in_range(zero_pos.first + move.first) &&
|
|
|
|
in_range(zero_pos.second + move.second)) {
|
|
|
|
// swap with the possible moves
|
|
|
|
std::array<std::array<uint32_t, N>, N> new_config = board;
|
|
|
|
std::swap(new_config[zero_pos.first][zero_pos.second],
|
|
|
|
new_config[zero_pos.first + move.first]
|
|
|
|
[zero_pos.second + move.second]);
|
|
|
|
EightPuzzle<N> new_state(new_config);
|
|
|
|
// Store new state and calculate heuristic value, and depth
|
|
|
|
NewStates.emplace_back(new_state);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return NewStates;
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* @brief check whether two boards are equal
|
|
|
|
* @returns `true` if check.state is equal to `this->state`, else
|
|
|
|
* `false`
|
|
|
|
*/
|
|
|
|
bool operator==(const EightPuzzle<N> &check) const {
|
|
|
|
if (check.get_size() != N) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
|
|
for (size_t j = 0; j < N; ++j) {
|
|
|
|
if (board[i][j] != check.board[i][j]) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* @brief check whether one board is lexicographically smaller
|
|
|
|
* @returns `true` if this->state is lexicographically smaller than
|
|
|
|
* `check.state`, else `false`
|
|
|
|
*/
|
|
|
|
bool operator<(const EightPuzzle<N> &check) const {
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
|
|
for (size_t j = 0; j < N; ++j) {
|
|
|
|
if (board[i][j] != check.board[i][j]) {
|
|
|
|
return board[i][j] < check.board[i][j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* @brief check whether one board is lexicographically smaller or equal
|
|
|
|
* @returns `true` if this->state is lexicographically smaller than
|
|
|
|
* `check.state` or same, else `false`
|
|
|
|
*/
|
|
|
|
bool operator<=(const EightPuzzle<N> &check) const {
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
|
|
for (size_t j = 0; j < N; ++j) {
|
|
|
|
if (board[i][j] != check.board[i][j]) {
|
|
|
|
return board[i][j] < check.board[i][j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief friend operator to display EightPuzzle<>
|
|
|
|
* @param op ostream object
|
|
|
|
* @param SomeState a certain state.
|
|
|
|
* @returns ostream operator op
|
|
|
|
*/
|
|
|
|
friend std::ostream &operator<<(std::ostream &op,
|
|
|
|
const EightPuzzle<N> &SomeState) {
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
|
|
for (size_t j = 0; j < N; ++j) {
|
|
|
|
op << SomeState.board[i][j] << " ";
|
|
|
|
}
|
|
|
|
op << "\n";
|
|
|
|
}
|
|
|
|
return op;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
/**
|
|
|
|
* @class AyStarSearch
|
|
|
|
* @brief A class defining [A* search
|
|
|
|
* algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm). for some
|
|
|
|
* initial state and final state
|
|
|
|
* @details AyStarSearch class is defined as the informed search algorithm
|
|
|
|
* that is formulated in terms of weighted graphs: starting from a specific
|
|
|
|
* starting node of a graph (initial state), it aims to find a path to the given
|
|
|
|
* goal node having the smallest cost (least distance travelled, shortest time,
|
|
|
|
* etc.)
|
|
|
|
* The weighted edges (or cost) is evaluated on two factors, G score
|
|
|
|
* (cost required from starting node or initial state to current state) and H
|
|
|
|
* score (cost required from current state to final state). The `F(state)`, then
|
|
|
|
* is evaluated as:
|
|
|
|
* `F(state) = G(state) + H(state)`.
|
|
|
|
* The best search would be the final state having minimum `F(state)` value
|
|
|
|
* @tparam Puzzle denotes the puzzle or problem involving initial state and
|
|
|
|
* final state to be solved by A* search.
|
|
|
|
* @note 1. The algorithm is referred from pesudocode from
|
|
|
|
* [Wikipedia page](https://en.wikipedia.org/wiki/A*_search_algorithm)
|
|
|
|
* as is.
|
|
|
|
* 2. For `AyStarSearch` to work, the definitions for template Puzzle is
|
|
|
|
* compulsory.
|
|
|
|
* a. Comparison operator for template Puzzle (`<`, `==`, and `<=`)
|
|
|
|
* b. `generate_possible_moves()`
|
|
|
|
*/
|
|
|
|
template <typename Puzzle>
|
|
|
|
class AyStarSearch {
|
|
|
|
/**
|
|
|
|
* @brief Struct that handles all the information related to the current
|
|
|
|
* state.
|
|
|
|
*/
|
|
|
|
typedef struct Info {
|
2021-08-28 01:50:40 +08:00
|
|
|
std::shared_ptr<Puzzle> state; /// Holds the current state.
|
|
|
|
size_t heuristic_value = 0; /// stores h score
|
|
|
|
size_t depth = 0; /// stores g score
|
2021-03-26 00:30:03 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Default constructor
|
|
|
|
*/
|
|
|
|
Info() = default;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief constructor having Puzzle as parameter
|
|
|
|
* @param A a puzzle object
|
|
|
|
*/
|
2021-08-28 01:50:40 +08:00
|
|
|
explicit Info(const Puzzle &A) : state(std::make_shared<Puzzle>(A)) {}
|
2021-03-26 00:30:03 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief constructor having three parameters
|
|
|
|
* @param A a puzzle object
|
|
|
|
* @param h_value heuristic value of this puzzle object
|
|
|
|
* @param depth the depth at which this node was found during traversal
|
|
|
|
*/
|
2021-04-09 07:39:28 +08:00
|
|
|
Info(const Puzzle &A, size_t h_value, size_t d)
|
2021-08-28 01:50:40 +08:00
|
|
|
: state(std::make_shared<Puzzle>(A)),
|
|
|
|
heuristic_value(h_value),
|
|
|
|
depth(d) {}
|
2021-03-26 00:30:03 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Copy constructor
|
|
|
|
* @param A Info object reference
|
|
|
|
*/
|
|
|
|
Info(const Info &A)
|
2021-08-28 01:50:40 +08:00
|
|
|
: state(std::make_shared<Puzzle>(A.state)),
|
2021-03-26 00:30:03 +08:00
|
|
|
heuristic_value(A.heuristic_value),
|
|
|
|
depth(A.depth) {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Move constructor
|
|
|
|
* @param A Info object reference
|
|
|
|
*/
|
|
|
|
Info(const Info &&A) noexcept
|
2021-08-28 01:50:40 +08:00
|
|
|
: state(std::make_shared<Puzzle>(std::move(A.state))),
|
2021-03-26 00:30:03 +08:00
|
|
|
heuristic_value(std::move(A.heuristic_value)),
|
|
|
|
depth(std::move(A.depth)) {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief copy assignment operator
|
|
|
|
* @param A Info object reference
|
|
|
|
*/
|
|
|
|
Info &operator=(const Info &A) {
|
|
|
|
state = A.state;
|
|
|
|
heuristic_value = A.heuristic_value;
|
|
|
|
depth = A.depth;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief move assignment operator
|
|
|
|
* @param A Info object reference
|
|
|
|
*/
|
|
|
|
Info &operator=(Info &&A) noexcept {
|
|
|
|
state = std::move(A.state);
|
|
|
|
heuristic_value = std::move(A.heuristic_value);
|
|
|
|
depth = std::move(A.depth);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* @brief Destructor for Info
|
|
|
|
*/
|
|
|
|
~Info() = default;
|
|
|
|
} Info;
|
|
|
|
|
2021-08-28 01:50:40 +08:00
|
|
|
std::shared_ptr<Info> Initial; // Initial state of the AyStarSearch
|
|
|
|
std::shared_ptr<Info> Final; // Final state of the AyStarSearch
|
2021-03-26 00:30:03 +08:00
|
|
|
/**
|
|
|
|
* @brief Custom comparator for open_list
|
|
|
|
*/
|
|
|
|
struct comparison_operator {
|
2021-08-28 01:50:40 +08:00
|
|
|
bool operator()(const std::shared_ptr<Info> &a,
|
|
|
|
const std::shared_ptr<Info> &b) const {
|
|
|
|
return *(a->state) < *(b->state);
|
2021-03-26 00:30:03 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
public:
|
2021-08-28 01:50:40 +08:00
|
|
|
using MapOfPuzzleInfoWithPuzzleInfo =
|
|
|
|
std::map<std::shared_ptr<Info>, std::shared_ptr<Info>,
|
|
|
|
comparison_operator>;
|
|
|
|
|
|
|
|
using MapOfPuzzleInfoWithInteger =
|
|
|
|
std::map<std::shared_ptr<Info>, uint32_t, comparison_operator>;
|
|
|
|
|
|
|
|
using SetOfPuzzleInfo =
|
|
|
|
std::set<std::shared_ptr<Info>, comparison_operator>;
|
2021-03-26 00:30:03 +08:00
|
|
|
/**
|
|
|
|
* @brief Parameterized constructor for AyStarSearch
|
|
|
|
* @param initial denoting initial state of the puzzle
|
|
|
|
* @param final denoting final state of the puzzle
|
|
|
|
*/
|
|
|
|
AyStarSearch(const Puzzle &initial, const Puzzle &final) {
|
2021-08-28 01:50:40 +08:00
|
|
|
Initial = std::make_shared<Info>(initial);
|
|
|
|
Final = std::make_shared<Info>(final);
|
2021-03-26 00:30:03 +08:00
|
|
|
}
|
|
|
|
/**
|
|
|
|
* @brief A helper solution: launches when a solution for AyStarSearch
|
|
|
|
* is found
|
|
|
|
* @param FinalState the pointer to the obtained final state
|
|
|
|
* @param parent_of the list of all parents of nodes stored during A*
|
|
|
|
* search
|
|
|
|
* @returns the list of moves denoting moves from final state to initial
|
|
|
|
* state (in reverse)
|
|
|
|
*/
|
|
|
|
std::vector<Puzzle> Solution(
|
2021-08-28 01:50:40 +08:00
|
|
|
std::shared_ptr<Info> FinalState,
|
|
|
|
const MapOfPuzzleInfoWithPuzzleInfo &parent_of) {
|
2021-03-26 00:30:03 +08:00
|
|
|
// Useful for traversing from final state to current state.
|
2021-08-28 01:50:40 +08:00
|
|
|
auto current_state = FinalState;
|
2021-03-26 00:30:03 +08:00
|
|
|
/*
|
|
|
|
* For storing the solution tree starting from initial state to
|
|
|
|
* final state
|
|
|
|
*/
|
|
|
|
std::vector<Puzzle> answer;
|
|
|
|
while (current_state != nullptr) {
|
2021-08-28 01:50:40 +08:00
|
|
|
answer.emplace_back(*current_state->state);
|
|
|
|
current_state = parent_of.find(current_state)->second;
|
2021-03-26 00:30:03 +08:00
|
|
|
}
|
|
|
|
return answer;
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* Main algorithm for finding `FinalState`, given the `InitialState`
|
|
|
|
* @param dist the heuristic finction, defined by the user
|
|
|
|
* @param permissible_depth the depth at which the A* search discards
|
|
|
|
* searching for solution
|
|
|
|
* @returns List of moves from Final state to initial state, if
|
|
|
|
* evaluated, else returns an empty array
|
|
|
|
*/
|
|
|
|
std::vector<Puzzle> a_star_search(
|
|
|
|
const std::function<uint32_t(const Puzzle &, const Puzzle &)> &dist,
|
|
|
|
const uint32_t permissible_depth = 30) {
|
2021-08-28 01:50:40 +08:00
|
|
|
MapOfPuzzleInfoWithPuzzleInfo
|
|
|
|
parent_of; /// Stores the parent of the states
|
|
|
|
MapOfPuzzleInfoWithInteger g_score; /// Stores the g_score
|
|
|
|
SetOfPuzzleInfo open_list; /// Stores the list to explore
|
|
|
|
SetOfPuzzleInfo closed_list; /// Stores the list that are explored
|
2021-03-26 00:30:03 +08:00
|
|
|
|
|
|
|
// Before starting the AyStartSearch, initialize the set and maps
|
|
|
|
open_list.emplace(Initial);
|
|
|
|
parent_of[Initial] = nullptr;
|
|
|
|
g_score[Initial] = 0;
|
|
|
|
|
|
|
|
while (!open_list.empty()) {
|
|
|
|
// Iterator for state having having lowest f_score.
|
2021-08-28 01:50:40 +08:00
|
|
|
typename SetOfPuzzleInfo::iterator it_low_f_score;
|
2021-03-26 00:30:03 +08:00
|
|
|
uint32_t min_f_score = 1e9;
|
|
|
|
for (auto iter = open_list.begin(); iter != open_list.end();
|
|
|
|
++iter) {
|
|
|
|
// f score here is evaluated by g score (depth) and h score
|
|
|
|
// (distance between current state and final state)
|
2021-08-28 01:50:40 +08:00
|
|
|
uint32_t f_score = (*iter)->heuristic_value + (*iter)->depth;
|
2021-03-26 00:30:03 +08:00
|
|
|
if (f_score < min_f_score) {
|
|
|
|
min_f_score = f_score;
|
|
|
|
it_low_f_score = iter;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// current_state, stores lowest f score so far for this state.
|
2021-08-28 01:50:40 +08:00
|
|
|
std::shared_ptr<Info> current_state = *it_low_f_score;
|
2021-03-26 00:30:03 +08:00
|
|
|
|
|
|
|
// if this current state is equal to final, return
|
2021-08-28 01:50:40 +08:00
|
|
|
if (*(current_state->state) == *(Final->state)) {
|
2021-03-26 00:30:03 +08:00
|
|
|
return Solution(current_state, parent_of);
|
|
|
|
}
|
|
|
|
// else remove from open list as visited.
|
|
|
|
open_list.erase(it_low_f_score);
|
|
|
|
// if current_state has exceeded the allowed depth, skip
|
|
|
|
// neighbor checking
|
|
|
|
if (current_state->depth >= permissible_depth) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// Generate all possible moves (neighbors) given the current
|
|
|
|
// state
|
|
|
|
std::vector<Puzzle> total_possible_moves =
|
2021-08-28 01:50:40 +08:00
|
|
|
current_state->state->generate_possible_moves();
|
2021-03-26 00:30:03 +08:00
|
|
|
|
|
|
|
for (Puzzle &neighbor : total_possible_moves) {
|
|
|
|
// calculate score of neighbors with respect to
|
|
|
|
// current_state
|
2021-08-28 01:50:40 +08:00
|
|
|
std::shared_ptr<Info> Neighbor = std::make_shared<Info>(
|
|
|
|
neighbor, dist(neighbor, *(Final->state)),
|
|
|
|
current_state->depth + 1U);
|
|
|
|
uint32_t temp_g_score = Neighbor->depth;
|
2021-03-26 00:30:03 +08:00
|
|
|
|
|
|
|
// Check whether this state is explored.
|
|
|
|
// If this state is discovered at greater depth, then discard,
|
|
|
|
// else remove from closed list and explore the node
|
|
|
|
auto closed_list_iter = closed_list.find(Neighbor);
|
|
|
|
if (closed_list_iter != closed_list.end()) {
|
|
|
|
// 1. If state in closed list has higher depth, then remove
|
|
|
|
// from list since we have found better option,
|
|
|
|
// 2. Else don't explore this state.
|
2021-08-28 01:50:40 +08:00
|
|
|
if (Neighbor->depth < (*closed_list_iter)->depth) {
|
2021-03-26 00:30:03 +08:00
|
|
|
closed_list.erase(closed_list_iter);
|
|
|
|
} else {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
auto neighbor_g_score_iter = g_score.find(Neighbor);
|
|
|
|
// if the neighbor is already created and has minimum
|
|
|
|
// g_score, then update g_score and f_score else insert new
|
|
|
|
if (neighbor_g_score_iter != g_score.end()) {
|
|
|
|
if (neighbor_g_score_iter->second > temp_g_score) {
|
|
|
|
neighbor_g_score_iter->second = temp_g_score;
|
|
|
|
parent_of[Neighbor] = current_state;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
g_score[Neighbor] = temp_g_score;
|
|
|
|
parent_of[Neighbor] = current_state;
|
|
|
|
}
|
|
|
|
// If this is a new state, insert into open_list
|
|
|
|
// else update if the this state has better g score than
|
|
|
|
// existing one.
|
|
|
|
auto iter = open_list.find(Neighbor);
|
|
|
|
if (iter == open_list.end()) {
|
|
|
|
open_list.emplace(Neighbor);
|
2021-08-28 01:50:40 +08:00
|
|
|
} else if ((*iter)->depth > Neighbor->depth) {
|
|
|
|
(*iter)->depth = Neighbor->depth;
|
2021-03-26 00:30:03 +08:00
|
|
|
}
|
|
|
|
}
|
2021-08-28 01:50:40 +08:00
|
|
|
closed_list.emplace(current_state);
|
2021-03-26 00:30:03 +08:00
|
|
|
}
|
|
|
|
// Cannot find the solution, return empty vector
|
|
|
|
return std::vector<Puzzle>(0);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace aystar_search
|
|
|
|
} // namespace machine_learning
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Self test-implementations
|
|
|
|
* @returns void
|
|
|
|
*/
|
|
|
|
static void test() {
|
|
|
|
// Renaming for simplicity
|
|
|
|
using matrix3 = std::array<std::array<uint32_t, 3>, 3>;
|
|
|
|
using row3 = std::array<uint32_t, 3>;
|
|
|
|
using matrix4 = std::array<std::array<uint32_t, 4>, 4>;
|
|
|
|
using row4 = std::array<uint32_t, 4>;
|
|
|
|
// 1st test: A* search for simple EightPuzzle problem
|
|
|
|
matrix3 puzzle;
|
|
|
|
puzzle[0] = row3({0, 2, 3});
|
|
|
|
puzzle[1] = row3({1, 5, 6});
|
|
|
|
puzzle[2] = row3({4, 7, 8});
|
|
|
|
|
|
|
|
matrix3 ideal;
|
|
|
|
ideal[0] = row3({1, 2, 3});
|
|
|
|
ideal[1] = row3({4, 5, 6});
|
|
|
|
ideal[2] = row3({7, 8, 0});
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Heuristic function: Manhattan distance
|
|
|
|
*/
|
|
|
|
auto manhattan_distance =
|
|
|
|
[](const machine_learning::aystar_search::EightPuzzle<> &first,
|
|
|
|
const machine_learning::aystar_search::EightPuzzle<> &second) {
|
|
|
|
uint32_t ret = 0;
|
2021-08-28 01:50:40 +08:00
|
|
|
for (size_t i = 0; i < first.get_size(); ++i) {
|
|
|
|
for (size_t j = 0; j < first.get_size(); ++j) {
|
2021-03-26 00:30:03 +08:00
|
|
|
uint32_t find = first.get(i, j);
|
2021-08-28 01:50:40 +08:00
|
|
|
size_t m = first.get_size(), n = first.get_size();
|
|
|
|
for (size_t k = 0; k < second.get_size(); ++k) {
|
|
|
|
for (size_t l = 0; l < second.get_size(); ++l) {
|
2021-03-26 00:30:03 +08:00
|
|
|
if (find == second.get(k, l)) {
|
|
|
|
std::tie(m, n) = std::make_pair(k, l);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2021-08-28 01:50:40 +08:00
|
|
|
if (m != first.get_size()) {
|
2021-03-26 00:30:03 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2021-08-28 01:50:40 +08:00
|
|
|
if (m != first.get_size()) {
|
|
|
|
ret += (std::max(m, i) - std::min(m, i)) +
|
|
|
|
(std::max(n, j) - std::min(n, j));
|
2021-03-26 00:30:03 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
};
|
|
|
|
|
|
|
|
machine_learning::aystar_search::EightPuzzle<> Puzzle(puzzle);
|
|
|
|
machine_learning::aystar_search::EightPuzzle<> Ideal(ideal);
|
|
|
|
machine_learning::aystar_search::AyStarSearch<
|
|
|
|
machine_learning::aystar_search::EightPuzzle<3>>
|
|
|
|
search(Puzzle, Ideal); /// Search object
|
|
|
|
|
|
|
|
std::vector<matrix3> answer; /// Array that validates the answer
|
|
|
|
|
|
|
|
answer.push_back(
|
|
|
|
matrix3({row3({0, 2, 3}), row3({1, 5, 6}), row3({4, 7, 8})}));
|
|
|
|
answer.push_back(
|
|
|
|
matrix3({row3({1, 2, 3}), row3({0, 5, 6}), row3({4, 7, 8})}));
|
|
|
|
answer.push_back(
|
|
|
|
matrix3({row3({1, 2, 3}), row3({4, 5, 6}), row3({0, 7, 8})}));
|
|
|
|
answer.push_back(
|
|
|
|
matrix3({row3({1, 2, 3}), row3({4, 5, 6}), row3({7, 0, 8})}));
|
|
|
|
answer.push_back(
|
|
|
|
matrix3({row3({1, 2, 3}), row3({4, 5, 6}), row3({7, 8, 0})}));
|
|
|
|
|
|
|
|
auto Solution = search.a_star_search(manhattan_distance);
|
|
|
|
std::cout << Solution.size() << std::endl;
|
|
|
|
|
|
|
|
assert(Solution.size() == answer.size());
|
|
|
|
|
|
|
|
uint32_t i = 0;
|
|
|
|
for (auto it = Solution.rbegin(); it != Solution.rend(); ++it) {
|
|
|
|
assert(it->get_state() == answer[i]);
|
|
|
|
++i;
|
|
|
|
}
|
|
|
|
|
|
|
|
// 2nd test: A* search for complicated EightPuzzle problem
|
|
|
|
// Initial state
|
|
|
|
puzzle[0] = row3({5, 7, 3});
|
|
|
|
puzzle[1] = row3({2, 0, 6});
|
|
|
|
puzzle[2] = row3({1, 4, 8});
|
|
|
|
// Final state
|
|
|
|
ideal[0] = row3({1, 2, 3});
|
|
|
|
ideal[1] = row3({4, 5, 6});
|
|
|
|
ideal[2] = row3({7, 8, 0});
|
|
|
|
|
|
|
|
Puzzle = machine_learning::aystar_search::EightPuzzle<>(puzzle);
|
|
|
|
Ideal = machine_learning::aystar_search::EightPuzzle<>(ideal);
|
|
|
|
|
|
|
|
// Initialize the search object
|
|
|
|
search = machine_learning::aystar_search::AyStarSearch<
|
|
|
|
machine_learning::aystar_search::EightPuzzle<3>>(Puzzle, Ideal);
|
|
|
|
|
|
|
|
Solution = search.a_star_search(manhattan_distance);
|
|
|
|
std::cout << Solution.size() << std::endl;
|
|
|
|
// Static assertion due to large solution
|
|
|
|
assert(13 == Solution.size());
|
|
|
|
// Check whether the final state is equal to expected one
|
|
|
|
assert(Solution[0].get_state() == ideal);
|
|
|
|
for (auto it = Solution.rbegin(); it != Solution.rend(); ++it) {
|
|
|
|
std::cout << *it << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
// 3rd test: A* search for 15-Puzzle
|
|
|
|
// Initial State of the puzzle
|
|
|
|
matrix4 puzzle2;
|
2021-08-28 01:50:40 +08:00
|
|
|
puzzle2[0] = row4({10, 1, 6, 2});
|
|
|
|
puzzle2[1] = row4({5, 8, 4, 3});
|
|
|
|
puzzle2[2] = row4({13, 0, 7, 11});
|
|
|
|
puzzle2[3] = row4({14, 9, 15, 12});
|
2021-03-26 00:30:03 +08:00
|
|
|
// Final state of the puzzle
|
|
|
|
matrix4 ideal2;
|
|
|
|
ideal2[0] = row4({1, 2, 3, 4});
|
|
|
|
ideal2[1] = row4({5, 6, 7, 8});
|
|
|
|
ideal2[2] = row4({9, 10, 11, 12});
|
|
|
|
ideal2[3] = row4({13, 14, 15, 0});
|
|
|
|
|
|
|
|
// Instantiate states for a*, initial state and final states
|
|
|
|
machine_learning::aystar_search::EightPuzzle<4> Puzzle2(puzzle2),
|
|
|
|
Ideal2(ideal2);
|
|
|
|
// Initialize the search object
|
|
|
|
machine_learning::aystar_search::AyStarSearch<
|
|
|
|
machine_learning::aystar_search::EightPuzzle<4>>
|
|
|
|
search2(Puzzle2, Ideal2);
|
|
|
|
/**
|
|
|
|
* Heuristic function: Manhattan distance
|
|
|
|
*/
|
|
|
|
auto manhattan_distance2 =
|
|
|
|
[](const machine_learning::aystar_search::EightPuzzle<4> &first,
|
|
|
|
const machine_learning::aystar_search::EightPuzzle<4> &second) {
|
|
|
|
uint32_t ret = 0;
|
2021-08-28 01:50:40 +08:00
|
|
|
for (size_t i = 0; i < first.get_size(); ++i) {
|
|
|
|
for (size_t j = 0; j < first.get_size(); ++j) {
|
2021-03-26 00:30:03 +08:00
|
|
|
uint32_t find = first.get(i, j);
|
2021-08-28 01:50:40 +08:00
|
|
|
size_t m = first.get_size(), n = first.get_size();
|
|
|
|
for (size_t k = 0; k < second.get_size(); ++k) {
|
|
|
|
for (size_t l = 0; l < second.get_size(); ++l) {
|
2021-03-26 00:30:03 +08:00
|
|
|
if (find == second.get(k, l)) {
|
|
|
|
std::tie(m, n) = std::make_pair(k, l);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2021-08-28 01:50:40 +08:00
|
|
|
if (m != first.get_size()) {
|
2021-03-26 00:30:03 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2021-08-28 01:50:40 +08:00
|
|
|
if (m != first.get_size()) {
|
|
|
|
ret += (std::max(m, i) - std::min(m, i)) +
|
|
|
|
(std::max(n, j) - std::min(n, j));
|
2021-03-26 00:30:03 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
};
|
|
|
|
|
|
|
|
auto sol2 = search2.a_star_search(manhattan_distance2);
|
|
|
|
std::cout << sol2.size() << std::endl;
|
|
|
|
|
|
|
|
// Static assertion due to large solution
|
2021-08-28 01:50:40 +08:00
|
|
|
assert(24 == sol2.size());
|
2021-03-26 00:30:03 +08:00
|
|
|
// Check whether the final state is equal to expected one
|
|
|
|
assert(sol2[0].get_state() == ideal2);
|
|
|
|
|
|
|
|
for (auto it = sol2.rbegin(); it != sol2.rend(); ++it) {
|
|
|
|
std::cout << *it << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* @brief Main function
|
|
|
|
* @returns 0 on exit
|
|
|
|
*/
|
|
|
|
int main() {
|
|
|
|
test(); // run self-test implementations
|
|
|
|
return 0;
|
|
|
|
}
|