mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
127 lines
3.5 KiB
C++
127 lines
3.5 KiB
C++
|
/**
|
||
|
* \file
|
||
|
* \brief [LU decomposition](https://en.wikipedia.org/wiki/LU_decompositon) of a
|
||
|
* square matrix
|
||
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
||
|
*/
|
||
|
#include <ctime>
|
||
|
#include <iomanip>
|
||
|
#include <iostream>
|
||
|
#include <vector>
|
||
|
#ifdef _OPENMP
|
||
|
#include <omp.h>
|
||
|
#endif
|
||
|
|
||
|
/** Perform LU decomposition on matrix
|
||
|
* \param[in] A matrix to decompose
|
||
|
* \param[out] L output L matrix
|
||
|
* \param[out] U output U matrix
|
||
|
* \returns 0 if no errors
|
||
|
* \returns negative if error occurred
|
||
|
*/
|
||
|
int lu_decomposition(const std::vector<std::vector<double>> &A,
|
||
|
std::vector<std::vector<double>> *L,
|
||
|
std::vector<std::vector<double>> *U) {
|
||
|
int row, col, j;
|
||
|
int mat_size = A.size();
|
||
|
|
||
|
if (mat_size != A[0].size()) {
|
||
|
// check matrix is a square matrix
|
||
|
std::cerr << "Not a square matrix!\n";
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// regularize each row
|
||
|
for (row = 0; row < mat_size; row++) {
|
||
|
// Upper triangular matrix
|
||
|
#ifdef _OPENMP
|
||
|
#pragma omp for
|
||
|
#endif
|
||
|
for (col = row; col < mat_size; col++) {
|
||
|
// Summation of L[i,j] * U[j,k]
|
||
|
double lu_sum = 0.;
|
||
|
for (j = 0; j < row; j++) lu_sum += L[0][row][j] * U[0][j][col];
|
||
|
|
||
|
// Evaluate U[i,k]
|
||
|
U[0][row][col] = A[row][col] - lu_sum;
|
||
|
}
|
||
|
|
||
|
// Lower triangular matrix
|
||
|
#ifdef _OPENMP
|
||
|
#pragma omp for
|
||
|
#endif
|
||
|
for (col = row; col < mat_size; col++) {
|
||
|
if (row == col) {
|
||
|
L[0][row][col] = 1.;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Summation of L[i,j] * U[j,k]
|
||
|
double lu_sum = 0.;
|
||
|
for (j = 0; j < row; j++) lu_sum += L[0][col][j] * U[0][j][row];
|
||
|
|
||
|
// Evaluate U[i,k]
|
||
|
L[0][col][row] = (A[col][row] - lu_sum) / U[0][row][row];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* operator to print a matrix
|
||
|
*/
|
||
|
template <typename T>
|
||
|
std::ostream &operator<<(std::ostream &out,
|
||
|
std::vector<std::vector<T>> const &v) {
|
||
|
const int width = 10;
|
||
|
const char separator = ' ';
|
||
|
|
||
|
for (size_t row = 0; row < v.size(); row++) {
|
||
|
for (size_t col = 0; col < v[row].size(); col++)
|
||
|
out << std::left << std::setw(width) << std::setfill(separator)
|
||
|
<< v[row][col];
|
||
|
out << std::endl;
|
||
|
}
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
/** Main function */
|
||
|
int main(int argc, char **argv) {
|
||
|
int mat_size = 3; // default matrix size
|
||
|
const int range = 50;
|
||
|
const int range2 = range >> 1;
|
||
|
|
||
|
if (argc == 2)
|
||
|
mat_size = atoi(argv[1]);
|
||
|
|
||
|
std::srand(std::time(NULL)); // random number initializer
|
||
|
|
||
|
/* Create a square matrix with random values */
|
||
|
std::vector<std::vector<double>> A(mat_size);
|
||
|
std::vector<std::vector<double>> L(mat_size); // output
|
||
|
std::vector<std::vector<double>> U(mat_size); // output
|
||
|
for (int i = 0; i < mat_size; i++) {
|
||
|
// calloc so that all valeus are '0' by default
|
||
|
A[i] = std::vector<double>(mat_size);
|
||
|
L[i] = std::vector<double>(mat_size);
|
||
|
U[i] = std::vector<double>(mat_size);
|
||
|
for (int j = 0; j < mat_size; j++)
|
||
|
/* create random values in the limits [-range2, range-1] */
|
||
|
A[i][j] = static_cast<double>(std::rand() % range - range2);
|
||
|
}
|
||
|
|
||
|
std::clock_t start_t = std::clock();
|
||
|
lu_decomposition(A, &L, &U);
|
||
|
std::clock_t end_t = std::clock();
|
||
|
std::cout << "Time taken: "
|
||
|
<< static_cast<double>(end_t - start_t) / CLOCKS_PER_SEC << "\n";
|
||
|
|
||
|
std::cout << "A = \n" << A << "\n";
|
||
|
std::cout << "L = \n" << L << "\n";
|
||
|
std::cout << "U = \n" << U << "\n";
|
||
|
|
||
|
return 0;
|
||
|
}
|