2020-08-09 04:02:14 +08:00
|
|
|
/**
|
|
|
|
* @file cycle_check_directed graph.cpp
|
|
|
|
*
|
|
|
|
* @brief BFS and DFS algorithms to check for cycle in a directed graph.
|
|
|
|
*
|
|
|
|
* @author [Anmol3299](mailto:mittalanmol22@gmail.com)
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <iostream> // for std::cout
|
|
|
|
#include <map> // for std::map
|
|
|
|
#include <queue> // for std::queue
|
|
|
|
#include <stdexcept> // for throwing errors
|
|
|
|
#include <type_traits> // for std::remove_reference
|
|
|
|
#include <utility> // for std::move
|
|
|
|
#include <vector> // for std::vector
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Implementation of non-weighted directed edge of a graph.
|
|
|
|
*
|
|
|
|
* The source vertex of the edge is labelled "src" and destination vertex is
|
|
|
|
* labelled "dest".
|
|
|
|
*/
|
|
|
|
struct Edge {
|
|
|
|
unsigned int src;
|
|
|
|
unsigned int dest;
|
|
|
|
|
|
|
|
Edge() = delete;
|
|
|
|
~Edge() = default;
|
|
|
|
Edge(Edge&&) = default;
|
|
|
|
Edge& operator=(Edge&&) = default;
|
|
|
|
Edge(Edge const&) = default;
|
|
|
|
Edge& operator=(Edge const&) = default;
|
|
|
|
|
|
|
|
/** Set the source and destination of the vertex.
|
|
|
|
*
|
|
|
|
* @param source is the source vertex of the edge.
|
|
|
|
* @param destination is the destination vertex of the edge.
|
|
|
|
*/
|
|
|
|
Edge(unsigned int source, unsigned int destination)
|
|
|
|
: src(source), dest(destination) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
using AdjList = std::map<unsigned int, std::vector<unsigned int>>;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Implementation of graph class.
|
|
|
|
*
|
|
|
|
* The graph will be represented using Adjacency List representation.
|
|
|
|
* This class contains 2 data members "m_vertices" & "m_adjList" used to
|
|
|
|
* represent the number of vertices and adjacency list of the graph
|
|
|
|
* respectively. The vertices are labelled 0 - (m_vertices - 1).
|
|
|
|
*/
|
|
|
|
class Graph {
|
|
|
|
public:
|
|
|
|
Graph() : m_adjList({}) {}
|
|
|
|
~Graph() = default;
|
|
|
|
Graph(Graph&&) = default;
|
|
|
|
Graph& operator=(Graph&&) = default;
|
|
|
|
Graph(Graph const&) = default;
|
|
|
|
Graph& operator=(Graph const&) = default;
|
|
|
|
|
|
|
|
/** Create a graph from vertices and adjacency list.
|
|
|
|
*
|
|
|
|
* @param vertices specify the number of vertices the graph would contain.
|
|
|
|
* @param adjList is the adjacency list representation of graph.
|
|
|
|
*/
|
|
|
|
Graph(unsigned int vertices, AdjList adjList)
|
|
|
|
: m_vertices(vertices), m_adjList(std::move(adjList)) {}
|
|
|
|
|
|
|
|
/** Create a graph from vertices and adjacency list.
|
|
|
|
*
|
|
|
|
* @param vertices specify the number of vertices the graph would contain.
|
|
|
|
* @param adjList is the adjacency list representation of graph.
|
|
|
|
*/
|
|
|
|
Graph(unsigned int vertices, AdjList&& adjList)
|
|
|
|
: m_vertices(vertices), m_adjList(std::move(adjList)) {}
|
|
|
|
|
|
|
|
/** Create a graph from vertices and a set of edges.
|
|
|
|
*
|
|
|
|
* Adjacency list of the graph would be created from the set of edges. If
|
|
|
|
* the source or destination of any edge has a value greater or equal to
|
|
|
|
* number of vertices, then it would throw a range_error.
|
|
|
|
*
|
|
|
|
* @param vertices specify the number of vertices the graph would contain.
|
|
|
|
* @param edges is a vector of edges.
|
|
|
|
*/
|
|
|
|
Graph(unsigned int vertices, std::vector<Edge> const& edges)
|
|
|
|
: m_vertices(vertices) {
|
|
|
|
for (auto const& edge : edges) {
|
|
|
|
if (edge.src >= vertices || edge.dest >= vertices) {
|
|
|
|
throw std::range_error(
|
|
|
|
"Either src or dest of edge out of range");
|
|
|
|
}
|
|
|
|
m_adjList[edge.src].emplace_back(edge.dest);
|
|
|
|
}
|
2020-07-25 10:25:30 +08:00
|
|
|
}
|
2020-08-09 04:02:14 +08:00
|
|
|
|
|
|
|
/** Return a const reference of the adjacency list.
|
|
|
|
*
|
|
|
|
* @return const reference to the adjacency list
|
|
|
|
*/
|
|
|
|
std::remove_reference<AdjList>::type const& getAdjList() const {
|
|
|
|
return m_adjList;
|
2020-07-25 10:25:30 +08:00
|
|
|
}
|
2020-08-09 04:02:14 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* @return number of vertices in the graph.
|
|
|
|
*/
|
|
|
|
unsigned int getVertices() const { return m_vertices; }
|
|
|
|
|
|
|
|
/** Add vertices in the graph.
|
|
|
|
*
|
|
|
|
* @param num is the number of vertices to be added. It adds 1 vertex by
|
|
|
|
* default.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
void addVertices(unsigned int num = 1) { m_vertices += num; }
|
|
|
|
|
|
|
|
/** Add an edge in the graph.
|
|
|
|
*
|
|
|
|
* @param edge that needs to be added.
|
|
|
|
*/
|
|
|
|
void addEdge(Edge const& edge) {
|
|
|
|
if (edge.src >= m_vertices || edge.dest >= m_vertices) {
|
|
|
|
throw std::range_error("Either src or dest of edge out of range");
|
|
|
|
}
|
|
|
|
m_adjList[edge.src].emplace_back(edge.dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Add an Edge in the graph
|
|
|
|
*
|
|
|
|
* @param source is source vertex of the edge.
|
|
|
|
* @param destination is the destination vertex of the edge.
|
|
|
|
*/
|
|
|
|
void addEdge(unsigned int source, unsigned int destination) {
|
|
|
|
if (source >= m_vertices || destination >= m_vertices) {
|
|
|
|
throw std::range_error(
|
|
|
|
"Either source or destination of edge out of range");
|
|
|
|
}
|
|
|
|
m_adjList[source].emplace_back(destination);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
unsigned int m_vertices = 0;
|
|
|
|
AdjList m_adjList;
|
2020-06-20 00:04:56 +08:00
|
|
|
};
|
2020-08-09 04:02:14 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Check if a directed graph has a cycle or not.
|
|
|
|
*
|
|
|
|
* This class provides 2 methods to check for cycle in a directed graph:
|
|
|
|
* isCyclicDFS & isCyclicBFS.
|
|
|
|
*
|
|
|
|
* - isCyclicDFS uses DFS traversal method to check for cycle in a graph.
|
|
|
|
* - isCyclidBFS used BFS traversal method to check for cycle in a graph.
|
|
|
|
*/
|
|
|
|
class CycleCheck {
|
|
|
|
private:
|
|
|
|
enum nodeStates : uint8_t { not_visited = 0, in_stack, visited };
|
|
|
|
|
|
|
|
/** Helper function of "isCyclicDFS".
|
|
|
|
*
|
|
|
|
* @param adjList is the adjacency list representation of some graph.
|
|
|
|
* @param state is the state of the nodes of the graph.
|
|
|
|
* @param node is the node being evaluated.
|
|
|
|
*
|
|
|
|
* @return true if graph has a cycle, else false.
|
|
|
|
*/
|
|
|
|
static bool isCyclicDFSHelper(AdjList const& adjList,
|
|
|
|
std::vector<nodeStates>* state,
|
|
|
|
unsigned int node) {
|
|
|
|
// Add node "in_stack" state.
|
|
|
|
(*state)[node] = in_stack;
|
|
|
|
|
|
|
|
// If the node has children, then recursively visit all children of the
|
|
|
|
// node.
|
|
|
|
auto const it = adjList.find(node);
|
|
|
|
if (it != adjList.end()) {
|
|
|
|
for (auto child : it->second) {
|
|
|
|
// If state of child node is "not_visited", evaluate that child
|
|
|
|
// for presence of cycle.
|
|
|
|
auto state_of_child = (*state)[child];
|
|
|
|
if (state_of_child == not_visited) {
|
|
|
|
if (isCyclicDFSHelper(adjList, state, child)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} else if (state_of_child == in_stack) {
|
|
|
|
// If child node was "in_stack", then that means that there
|
|
|
|
// is a cycle in the graph. Return true for presence of the
|
|
|
|
// cycle.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Current node has been evaluated for the presence of cycle and had no
|
|
|
|
// cycle. Mark current node as "visited".
|
|
|
|
(*state)[node] = visited;
|
|
|
|
// Return that current node didn't result in any cycles.
|
|
|
|
return false;
|
2020-08-02 13:55:50 +08:00
|
|
|
}
|
2020-08-09 04:02:14 +08:00
|
|
|
|
|
|
|
public:
|
|
|
|
/** Driver function to check if a graph has a cycle.
|
|
|
|
*
|
|
|
|
* This function uses DFS to check for cycle in the graph.
|
|
|
|
*
|
|
|
|
* @param graph which needs to be evaluated for the presence of cycle.
|
|
|
|
* @return true if a cycle is detected, else false.
|
|
|
|
*/
|
|
|
|
static bool isCyclicDFS(Graph const& graph) {
|
|
|
|
auto vertices = graph.getVertices();
|
|
|
|
|
|
|
|
/** State of the node.
|
|
|
|
*
|
|
|
|
* It is a vector of "nodeStates" which represents the state node is in.
|
|
|
|
* It can take only 3 values: "not_visited", "in_stack", and "visited".
|
|
|
|
*
|
|
|
|
* Initially, all nodes are in "not_visited" state.
|
|
|
|
*/
|
|
|
|
std::vector<nodeStates> state(vertices, not_visited);
|
|
|
|
|
|
|
|
// Start visiting each node.
|
|
|
|
for (unsigned int node = 0; node < vertices; node++) {
|
|
|
|
// If a node is not visited, only then check for presence of cycle.
|
|
|
|
// There is no need to check for presence of cycle for a visited
|
|
|
|
// node as it has already been checked for presence of cycle.
|
|
|
|
if (state[node] == not_visited) {
|
|
|
|
// Check for cycle.
|
|
|
|
if (isCyclicDFSHelper(graph.getAdjList(), &state, node)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// All nodes have been safely traversed, that means there is no cycle in
|
|
|
|
// the graph. Return false.
|
|
|
|
return false;
|
2020-07-25 10:25:30 +08:00
|
|
|
}
|
2020-06-20 00:04:56 +08:00
|
|
|
|
2020-08-09 04:02:14 +08:00
|
|
|
/** Check if a graph has cycle or not.
|
|
|
|
*
|
|
|
|
* This function uses BFS to check if a graph is cyclic or not.
|
|
|
|
*
|
|
|
|
* @param graph which needs to be evaluated for the presence of cycle.
|
|
|
|
* @return true if a cycle is detected, else false.
|
|
|
|
*/
|
|
|
|
static bool isCyclicBFS(Graph const& graph) {
|
|
|
|
auto graphAjdList = graph.getAdjList();
|
|
|
|
auto vertices = graph.getVertices();
|
|
|
|
|
|
|
|
std::vector<unsigned int> indegree(vertices, 0);
|
|
|
|
// Calculate the indegree i.e. the number of incident edges to the node.
|
|
|
|
for (auto const& list : graphAjdList) {
|
|
|
|
auto children = list.second;
|
|
|
|
for (auto const& child : children) {
|
|
|
|
indegree[child]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::queue<unsigned int> can_be_solved;
|
|
|
|
for (unsigned int node = 0; node < vertices; node++) {
|
|
|
|
// If a node doesn't have any input edges, then that node will
|
|
|
|
// definately not result in a cycle and can be visited safely.
|
|
|
|
if (!indegree[node]) {
|
|
|
|
can_be_solved.emplace(node);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Vertices that need to be traversed.
|
|
|
|
auto remain = vertices;
|
|
|
|
// While there are safe nodes that we can visit.
|
|
|
|
while (!can_be_solved.empty()) {
|
|
|
|
auto solved = can_be_solved.front();
|
|
|
|
// Visit the node.
|
|
|
|
can_be_solved.pop();
|
|
|
|
// Decrease number of nodes that need to be traversed.
|
|
|
|
remain--;
|
|
|
|
|
|
|
|
// Visit all the children of the visited node.
|
|
|
|
auto it = graphAjdList.find(solved);
|
|
|
|
if (it != graphAjdList.end()) {
|
|
|
|
for (auto child : it->second) {
|
|
|
|
// Check if we can visited the node safely.
|
|
|
|
if (--indegree[child] == 0) {
|
|
|
|
// if node can be visited safely, then add that node to
|
|
|
|
// the visit queue.
|
|
|
|
can_be_solved.emplace(child);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there are still nodes that we can't visit, then it means that
|
|
|
|
// there is a cycle and return true, else return false.
|
|
|
|
return !(remain == 0);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Main function.
|
|
|
|
*/
|
2020-06-20 00:04:56 +08:00
|
|
|
int main() {
|
2020-08-09 04:02:14 +08:00
|
|
|
// Instantiate the graph.
|
|
|
|
Graph g(7, std::vector<Edge>{{0, 1}, {1, 2}, {2, 0}, {2, 5}, {3, 5}});
|
|
|
|
// Check for cycle using BFS method.
|
|
|
|
std::cout << CycleCheck::isCyclicBFS(g) << '\n';
|
|
|
|
|
|
|
|
// Check for cycle using DFS method.
|
|
|
|
std::cout << CycleCheck::isCyclicDFS(g) << '\n';
|
|
|
|
return 0;
|
2020-06-20 00:04:56 +08:00
|
|
|
}
|