mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
114 lines
2.6 KiB
C++
114 lines
2.6 KiB
C++
|
/**
|
||
|
* @file
|
||
|
* @brief This program computes the N^th Fibonacci number in modulo mod
|
||
|
* input argument .
|
||
|
*
|
||
|
* Takes O(logn) time to compute nth Fibonacci number
|
||
|
*
|
||
|
*
|
||
|
* \author [villayatali123](https://github.com/villayatali123)
|
||
|
* \author [unknown author]()
|
||
|
* @see fibonacci.cpp, fibonacci_fast.cpp, string_fibonacci.cpp, fibonacci_large.cpp
|
||
|
*/
|
||
|
|
||
|
#include<iostream>
|
||
|
#include<vector>
|
||
|
#include <cassert>
|
||
|
|
||
|
/**
|
||
|
* This function finds nth fibonacci number in a given modulus
|
||
|
* @param n nth fibonacci number
|
||
|
* @param mod modulo number
|
||
|
*/
|
||
|
uint64_t fibo(uint64_t n , uint64_t mod )
|
||
|
{
|
||
|
std::vector<uint64_t> result(2,0);
|
||
|
std::vector<std::vector<uint64_t>> transition(2,std::vector<uint64_t>(2,0));
|
||
|
std::vector<std::vector<uint64_t>> Identity(2,std::vector<uint64_t>(2,0));
|
||
|
n--;
|
||
|
result[0]=1, result[1]=1;
|
||
|
Identity[0][0]=1; Identity[0][1]=0;
|
||
|
Identity[1][0]=0; Identity[1][1]=1;
|
||
|
|
||
|
transition[0][0]=0;
|
||
|
transition[1][0]=transition[1][1]=transition[0][1]=1;
|
||
|
|
||
|
while(n)
|
||
|
{
|
||
|
if(n%2)
|
||
|
{
|
||
|
std::vector<std::vector<uint64_t>> res(2, std::vector<uint64_t>(2,0));
|
||
|
for(int i=0;i<2;i++)
|
||
|
{
|
||
|
for(int j=0;j<2;j++)
|
||
|
{
|
||
|
for(int k=0;k<2;k++)
|
||
|
{
|
||
|
res[i][j]=(res[i][j]%mod+((Identity[i][k]%mod*transition[k][j]%mod))%mod)%mod;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for(int i=0;i<2;i++)
|
||
|
{
|
||
|
for(int j=0;j<2;j++)
|
||
|
{
|
||
|
Identity[i][j]=res[i][j];
|
||
|
}
|
||
|
}
|
||
|
n--;
|
||
|
}
|
||
|
else{
|
||
|
std::vector<std::vector<uint64_t>> res1(2, std::vector<uint64_t>(2,0));
|
||
|
for(int i=0;i<2;i++)
|
||
|
{
|
||
|
for(int j=0;j<2;j++)
|
||
|
{
|
||
|
for(int k=0;k<2;k++)
|
||
|
{
|
||
|
res1[i][j]=(res1[i][j]%mod+((transition[i][k]%mod*transition[k][j]%mod))%mod)%mod;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for(int i=0;i<2;i++)
|
||
|
{
|
||
|
for(int j=0;j<2;j++)
|
||
|
{
|
||
|
transition[i][j]=res1[i][j];
|
||
|
}
|
||
|
}
|
||
|
n=n/2;
|
||
|
}
|
||
|
}
|
||
|
return ((result[0]%mod*Identity[0][0]%mod)%mod+(result[1]%mod*Identity[1][0]%mod)%mod)%mod;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Function to test above algorithm
|
||
|
*/
|
||
|
void test()
|
||
|
{
|
||
|
assert(fibo(6, 1000000007 ) == 8);
|
||
|
std::cout << "test case:1 passed\n";
|
||
|
assert(fibo(5, 1000000007 ) == 5);
|
||
|
std::cout << "test case:2 passed\n";
|
||
|
assert(fibo(10 , 1000000007) == 55);
|
||
|
std::cout << "test case:3 passed\n";
|
||
|
assert(fibo(500 , 100) == 25);
|
||
|
std::cout << "test case:3 passed\n";
|
||
|
assert(fibo(500 , 10000) == 4125);
|
||
|
std::cout << "test case:3 passed\n";
|
||
|
std::cout << "--All tests passed--\n";
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Main function
|
||
|
*/
|
||
|
int main()
|
||
|
{
|
||
|
test();
|
||
|
uint64_t mod=1000000007;
|
||
|
std::cout<<"Enter the value of N: ";
|
||
|
uint64_t n=0; std::cin>>n;
|
||
|
std::cout<<n<<"th Fibonacci number in modulo " << mod << ": "<< fibo( n , mod) << std::endl;
|
||
|
}
|