2019-12-01 05:56:10 +08:00
|
|
|
// Copyright 2020 Divide-et-impera-11
|
2019-12-01 05:41:18 +08:00
|
|
|
#include <assert.h>
|
2019-11-29 08:25:28 +08:00
|
|
|
#include <iostream>
|
|
|
|
#include <string>
|
2019-12-01 05:41:18 +08:00
|
|
|
using namespaces std;
|
2019-12-01 05:56:10 +08:00
|
|
|
// Binary Search Algorithm(use by struzik algorithm)
|
2019-12-01 05:41:18 +08:00
|
|
|
// Time Complexity O(log n) where 'n' is the number of elements
|
|
|
|
// Worst Time Complexity O(log n)
|
|
|
|
// Best Time Complexity Ω(1)
|
|
|
|
// Space Complexity O(1)
|
|
|
|
// Auxiliary Space Complexity O(1)
|
|
|
|
template<class Type> inline Type* binary_s(Type *array, size_t size, Type key) {
|
|
|
|
int32_t lower_index(0), upper_index(size - 1), middle_index;
|
|
|
|
while (lower_index <= upper_index) {
|
|
|
|
middle_index = floor((lower_index + upper_index) / 2);
|
|
|
|
if (*(array + middle_index) < key) lower_index = (middle_index + 1);
|
|
|
|
else if (*(array + middle_index) > key)upper_index = (middle_index - 1);
|
|
|
|
else return (array + middle_index);
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
// Struzik Search Algorithm(Exponential)
|
|
|
|
// Time Complexity O(log i)where i is the position of search key in the list
|
|
|
|
// Worst Time Complexity O(log i)
|
|
|
|
// Best Time Complexity Ω(1)
|
|
|
|
// Space Complexity O(1)
|
|
|
|
// Auxiliary Space Complexity O(1)
|
2019-12-01 05:56:10 +08:00
|
|
|
/* Tha algorithm try to search the range where the key should be.
|
|
|
|
If it has been found we do a binary search there.
|
|
|
|
The range of the search grows by exponential every time.
|
|
|
|
If the key is larger than the last element of array,
|
|
|
|
the start of block(block_front) will be equal to the end of block(block_size)
|
|
|
|
and the algorithm return null ponter,
|
|
|
|
every other cases the algoritm return fom the loop. */
|
2019-12-01 05:41:18 +08:00
|
|
|
template<class Type> Type* struzik_search(Type* array, size_t size, Type key) {
|
|
|
|
uint32_t block_front(0), block_size = size == 0 ? 0 : 1;
|
|
|
|
while (block_front != block_size) {
|
|
|
|
if (*(array + block_size - 1) < key) {
|
|
|
|
block_front = block_size;
|
|
|
|
(block_size * 2 - 1 < size) ? (block_size *= 2) : block_size = size;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
return binary_s<Type>(array + block_front, (block_size - block_front), key);
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
2019-12-01 04:01:52 +08:00
|
|
|
int main() {
|
2019-12-01 05:59:52 +08:00
|
|
|
// TEST CASES
|
2019-12-01 05:41:18 +08:00
|
|
|
int *sorted_array = new int[7]{7, 10, 15, 23, 70, 105, 203};
|
|
|
|
assert(struzik_search<int>(sorted_array, 7, 0) == nullptr);
|
|
|
|
assert(struzik_search<int>(sorted_array, 7, 1000) == nullptr);
|
|
|
|
assert(struzik_search<int>(sorted_array, 7, 50) == nullptr);
|
|
|
|
assert(struzik_search<int>(sorted_array, 7, 7) == sorted_array);
|
2019-12-01 05:59:52 +08:00
|
|
|
// TEST CASES
|
2019-12-01 04:20:54 +08:00
|
|
|
return 0;
|
2019-11-29 08:25:28 +08:00
|
|
|
}
|