mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
60 lines
1.4 KiB
C++
60 lines
1.4 KiB
C++
|
/**
|
||
|
* \file
|
||
|
* \brief Solve the equation \f$f(x)=0\f$ using [Newton-Raphson
|
||
|
* method](https://en.wikipedia.org/wiki/Newton%27s_method) for both real and
|
||
|
* complex solutions
|
||
|
*
|
||
|
* The \f$(i+1)^\text{th}\f$ approximation is given by:
|
||
|
* \f[
|
||
|
* x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}
|
||
|
* \f]
|
||
|
*
|
||
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
||
|
* \see bisection_method.cpp, false_position.cpp
|
||
|
*/
|
||
|
#include <cmath>
|
||
|
#include <ctime>
|
||
|
#include <iostream>
|
||
|
#include <limits>
|
||
|
|
||
|
#define EPSILON \
|
||
|
1e-6 // std::numeric_limits<double>::epsilon() ///< system accuracy limit
|
||
|
#define MAX_ITERATIONS 50000 ///< Maximum number of iterations to check
|
||
|
|
||
|
/** define \f$f(x)\f$ to find root for
|
||
|
*/
|
||
|
static double eq(double i) {
|
||
|
return (std::pow(i, 3) - (4 * i) - 9); // original equation
|
||
|
}
|
||
|
|
||
|
/** define the derivative function \f$f'(x)\f$
|
||
|
*/
|
||
|
static double eq_der(double i) {
|
||
|
return ((3 * std::pow(i, 2)) - 4); // derivative of equation
|
||
|
}
|
||
|
|
||
|
/** Main function */
|
||
|
int main() {
|
||
|
std::srand(std::time(nullptr)); // initialize randomizer
|
||
|
|
||
|
double z, c = std::rand() % 100, m, n;
|
||
|
int i;
|
||
|
|
||
|
std::cout << "\nInitial approximation: " << c;
|
||
|
|
||
|
// start iterations
|
||
|
for (i = 0; i < MAX_ITERATIONS; i++) {
|
||
|
m = eq(c);
|
||
|
n = eq_der(c);
|
||
|
|
||
|
z = c - (m / n);
|
||
|
c = z;
|
||
|
|
||
|
if (std::abs(m) < EPSILON) // stoping criteria
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
std::cout << "\n\nRoot: " << z << "\t\tSteps: " << i << std::endl;
|
||
|
return 0;
|
||
|
}
|