mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
49 lines
885 B
C++
49 lines
885 B
C++
|
#include<bits/stdc++.h>
|
||
|
|
||
|
using namespace std;
|
||
|
typedef long long int ll;
|
||
|
|
||
|
/**
|
||
|
|
||
|
Euler Totient Function also know as phi function.
|
||
|
|
||
|
phi(n) = phi(p1^a1).phi(p2^a2)...
|
||
|
where p1, p2,... are prime factor of n.
|
||
|
|
||
|
3 Euler's Property:
|
||
|
1. phi(prime_no) = prime_no-1
|
||
|
2. phi(prime_no^k) = (prime_no^k - prime_no^(k-1))
|
||
|
3. phi(a,b) = phi(a). phi(b) where a and b are relative primes.
|
||
|
|
||
|
Applying this 3 property on the first equation.
|
||
|
phi(n) = n. (1-1/p1). (1-1/p2). ...
|
||
|
where p1,p2... are prime factors.
|
||
|
|
||
|
Hence Implementation in O(sqrt(n)).
|
||
|
|
||
|
*/
|
||
|
|
||
|
ll phiFunction(ll n){
|
||
|
ll res = n;
|
||
|
for(ll i=2;i*i<=n;i++){
|
||
|
if(n%i==0){
|
||
|
while(n%i==0){
|
||
|
n/=i;
|
||
|
}
|
||
|
res-=res/i;
|
||
|
}
|
||
|
}
|
||
|
if(n>1)res-=res/n;
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
int main(){
|
||
|
ll t;
|
||
|
cin>>t;
|
||
|
while(t--){
|
||
|
ll n;
|
||
|
cin>>n;
|
||
|
cout<<phiFunction(n)<<endl;
|
||
|
}
|
||
|
}
|