TheAlgorithms-C-Plus-Plus/math/eulers_totient_function.cpp

49 lines
885 B
C++
Raw Normal View History

2020-03-29 19:48:49 +08:00
#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
/**
Euler Totient Function also know as phi function.
phi(n) = phi(p1^a1).phi(p2^a2)...
where p1, p2,... are prime factor of n.
3 Euler's Property:
1. phi(prime_no) = prime_no-1
2. phi(prime_no^k) = (prime_no^k - prime_no^(k-1))
3. phi(a,b) = phi(a). phi(b) where a and b are relative primes.
Applying this 3 property on the first equation.
phi(n) = n. (1-1/p1). (1-1/p2). ...
where p1,p2... are prime factors.
Hence Implementation in O(sqrt(n)).
*/
ll phiFunction(ll n){
ll res = n;
for(ll i=2;i*i<=n;i++){
if(n%i==0){
while(n%i==0){
n/=i;
}
res-=res/i;
}
}
if(n>1)res-=res/n;
return res;
}
int main(){
ll t;
cin>>t;
while(t--){
ll n;
cin>>n;
cout<<phiFunction(n)<<endl;
}
}