TheAlgorithms-C-Plus-Plus/data_structure/avltree.cpp

152 lines
3.5 KiB
C++
Raw Normal View History

2018-10-11 13:15:50 +08:00
#include <iostream>
#include <queue>
using namespace std;
typedef struct node {
int data;
int height;
struct node *left;
struct node *right;
2019-08-21 10:10:08 +08:00
} node;
2018-10-11 13:15:50 +08:00
int max(int a, int b) { return a > b ? a : b; }
2018-10-11 13:15:50 +08:00
2018-10-11 15:23:27 +08:00
// Returns a new Node
node *createNode(int data) {
node *nn = new node();
nn->data = data;
nn->height = 0;
nn->left = NULL;
nn->right = NULL;
return nn;
2018-10-11 13:15:50 +08:00
}
// Returns height of tree
2018-10-11 15:23:27 +08:00
int height(node *root) {
if (root == NULL)
return 0;
return 1 + max(height(root->left), height(root->right));
2018-10-11 13:15:50 +08:00
}
// Returns difference between height of left and right subtree
2018-10-11 15:23:27 +08:00
int getBalance(node *root) { return height(root->left) - height(root->right); }
2018-10-11 13:15:50 +08:00
2018-10-11 15:23:27 +08:00
// Returns Node after Right Rotation
node *rightRotate(node *root) {
node *t = root->left;
node *u = t->right;
t->right = root;
root->left = u;
return t;
2018-10-11 13:15:50 +08:00
}
2018-10-11 15:23:27 +08:00
// Returns Node after Left Rotation
node *leftRotate(node *root) {
node *t = root->right;
node *u = t->left;
t->left = root;
root->right = u;
return t;
2018-10-11 13:15:50 +08:00
}
2018-10-11 15:23:27 +08:00
// Returns node with minimum value in the tree
node *minValue(node *root) {
if (root->left == NULL)
return root;
return minValue(root->left);
2018-10-11 15:23:27 +08:00
}
// Balanced Insertion
node *insert(node *root, int item) {
node *nn = createNode(item);
if (root == NULL)
return nn;
if (item < root->data)
root->left = insert(root->left, item);
else
root->right = insert(root->right, item);
int b = getBalance(root);
if (b > 1) {
if (getBalance(root->left) < 0)
root->left = leftRotate(root->left); // Left-Right Case
return rightRotate(root); // Left-Left Case
} else if (b < -1) {
if (getBalance(root->right) > 0)
root->right = rightRotate(root->right); // Right-Left Case
return leftRotate(root); // Right-Right Case
}
return root;
2018-10-11 13:15:50 +08:00
}
2018-10-11 15:23:27 +08:00
// Balanced Deletion
node *deleteNode(node *root, int key) {
if (root == NULL)
return root;
if (key < root->data)
root->left = deleteNode(root->left, key);
else if (key > root->data)
root->right = deleteNode(root->right, key);
else {
// Node to be deleted is leaf node or have only one Child
if (!root->right) {
node *temp = root->left;
delete (root);
root = NULL;
return temp;
} else if (!root->left) {
node *temp = root->right;
delete (root);
root = NULL;
return temp;
}
// Node to be deleted have both left and right subtrees
node *temp = minValue(root->right);
root->data = temp->data;
root->right = deleteNode(root->right, temp->data);
}
// Balancing Tree after deletion
return root;
2018-10-11 15:23:27 +08:00
}
// LevelOrder (Breadth First Search)
void levelOrder(node *root) {
queue<node *> q;
q.push(root);
while (!q.empty()) {
root = q.front();
cout << root->data << " ";
q.pop();
if (root->left)
q.push(root->left);
if (root->right)
q.push(root->right);
}
2018-10-11 13:15:50 +08:00
}
int main() {
// Testing AVL Tree
node *root = NULL;
int i;
for (i = 1; i <= 7; i++) root = insert(root, i);
cout << "LevelOrder: ";
levelOrder(root);
root = deleteNode(root, 1); // Deleting key with value 1
cout << "\nLevelOrder: ";
levelOrder(root);
root = deleteNode(root, 4); // Deletin key with value 4
cout << "\nLevelOrder: ";
levelOrder(root);
return 0;
2018-10-11 13:15:50 +08:00
}