2020-05-28 03:42:12 +08:00
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
* @brief Compute the greatest common denominator of two integers using
|
|
|
|
* *iterative form* of
|
|
|
|
* [Euclidean algorithm](https://en.wikipedia.org/wiki/Euclidean_algorithm)
|
|
|
|
*
|
2020-05-28 06:55:09 +08:00
|
|
|
* @see gcd_recursive_euclidean.cpp, gcd_of_n_numbers.cpp
|
2020-05-28 03:42:12 +08:00
|
|
|
*/
|
2019-12-28 14:10:53 +08:00
|
|
|
#include <iostream>
|
|
|
|
#include <stdexcept>
|
|
|
|
|
2020-05-28 03:42:12 +08:00
|
|
|
/**
|
|
|
|
* algorithm
|
|
|
|
*/
|
2019-12-28 14:10:53 +08:00
|
|
|
int gcd(int num1, int num2) {
|
|
|
|
if (num1 <= 0 | num2 <= 0) {
|
|
|
|
throw std::domain_error("Euclidean algorithm domain is for ints > 0");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (num1 == num2) {
|
|
|
|
return num1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int base_num = 0;
|
|
|
|
int previous_remainder = 1;
|
|
|
|
|
|
|
|
if (num1 > num2) {
|
|
|
|
base_num = num1;
|
|
|
|
previous_remainder = num2;
|
|
|
|
} else {
|
|
|
|
base_num = num2;
|
|
|
|
previous_remainder = num1;
|
|
|
|
}
|
|
|
|
|
|
|
|
while ((base_num % previous_remainder) != 0) {
|
|
|
|
int old_base = base_num;
|
|
|
|
base_num = previous_remainder;
|
|
|
|
previous_remainder = old_base % previous_remainder;
|
|
|
|
}
|
|
|
|
|
|
|
|
return previous_remainder;
|
|
|
|
}
|
|
|
|
|
2020-05-28 03:42:12 +08:00
|
|
|
/**
|
|
|
|
* Main function
|
|
|
|
*/
|
2019-12-28 14:10:53 +08:00
|
|
|
int main() {
|
|
|
|
std::cout << "gcd of 120,7 is " << (gcd(120, 7)) << std::endl;
|
|
|
|
try {
|
|
|
|
std::cout << "gcd of -120,10 is " << gcd(-120, 10) << std::endl;
|
|
|
|
} catch (const std::domain_error &e) {
|
|
|
|
std::cout << "Error handling was successful" << std::endl;
|
|
|
|
}
|
|
|
|
std::cout << "gcd of 312,221 is " << (gcd(312, 221)) << std::endl;
|
|
|
|
std::cout << "gcd of 289,204 is " << (gcd(289, 204)) << std::endl;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|