mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
118 lines
4.0 KiB
C++
118 lines
4.0 KiB
C++
|
/**
|
||
|
* @file
|
||
|
* @brief [Subset-sum](https://en.wikipedia.org/wiki/Subset_sum_problem) (only
|
||
|
* continuous subsets) problem
|
||
|
* @details We are given an array and a sum value. The algorithms find all
|
||
|
* the subarrays of that array with sum equal to the given sum and return such
|
||
|
* subarrays count. This approach will have \f$O(n)\f$ time complexity and
|
||
|
* \f$O(n)\f$ space complexity. NOTE: In this problem, we are only referring to
|
||
|
* the continuous subsets as subarrays everywhere. Subarrays can be created
|
||
|
* using deletion operation at the end of the front of an array only. The parent
|
||
|
* array is also counted in subarrays having 0 number of deletion operations.
|
||
|
*
|
||
|
* @author [Swastika Gupta](https://github.com/Swastyy)
|
||
|
*/
|
||
|
|
||
|
#include <cassert> /// for assert
|
||
|
#include <iostream> /// for IO operations
|
||
|
#include <unordered_map> /// for unordered_map
|
||
|
#include <vector> /// for std::vector
|
||
|
|
||
|
/**
|
||
|
* @namespace backtracking
|
||
|
* @brief Backtracking algorithms
|
||
|
*/
|
||
|
namespace backtracking {
|
||
|
/**
|
||
|
* @namespace subarray_sum
|
||
|
* @brief Functions for the [Subset
|
||
|
* sum](https://en.wikipedia.org/wiki/Subset_sum_problem) implementation
|
||
|
*/
|
||
|
namespace subarray_sum {
|
||
|
/**
|
||
|
* @brief The main function that implements the count of the subarrays
|
||
|
* @param sum is the required sum of any subarrays
|
||
|
* @param in_arr is the input array
|
||
|
* @returns count of the number of subsets with required sum
|
||
|
*/
|
||
|
uint64_t subarray_sum(int64_t sum, const std::vector<int64_t> &in_arr) {
|
||
|
int64_t nelement = in_arr.size();
|
||
|
int64_t count_of_subset = 0;
|
||
|
int64_t current_sum = 0;
|
||
|
std::unordered_map<int64_t, int64_t>
|
||
|
sumarray; // to store the subarrays count
|
||
|
// frequency having some sum value
|
||
|
|
||
|
for (int64_t i = 0; i < nelement; i++) {
|
||
|
current_sum += in_arr[i];
|
||
|
|
||
|
if (current_sum == sum) {
|
||
|
count_of_subset++;
|
||
|
}
|
||
|
// If in case current_sum is greater than the required sum
|
||
|
if (sumarray.find(current_sum - sum) != sumarray.end()) {
|
||
|
count_of_subset += (sumarray[current_sum - sum]);
|
||
|
}
|
||
|
sumarray[current_sum]++;
|
||
|
}
|
||
|
return count_of_subset;
|
||
|
}
|
||
|
} // namespace subarray_sum
|
||
|
} // namespace backtracking
|
||
|
|
||
|
/**
|
||
|
* @brief Self-test implementations
|
||
|
* @returns void
|
||
|
*/
|
||
|
static void test() {
|
||
|
// 1st test
|
||
|
std::cout << "1st test ";
|
||
|
std::vector<int64_t> array1 = {-7, -3, -2, 5, 8}; // input array
|
||
|
assert(
|
||
|
backtracking::subarray_sum::subarray_sum(0, array1) ==
|
||
|
1); // first argument in subarray_sum function is the required sum and
|
||
|
// second is the input array, answer is the subarray {(-3,-2,5)}
|
||
|
std::cout << "passed" << std::endl;
|
||
|
|
||
|
// 2nd test
|
||
|
std::cout << "2nd test ";
|
||
|
std::vector<int64_t> array2 = {1, 2, 3, 3};
|
||
|
assert(backtracking::subarray_sum::subarray_sum(6, array2) ==
|
||
|
2); // here we are expecting 2 subsets which sum up to 6 i.e.
|
||
|
// {(1,2,3),(3,3)}
|
||
|
std::cout << "passed" << std::endl;
|
||
|
|
||
|
// 3rd test
|
||
|
std::cout << "3rd test ";
|
||
|
std::vector<int64_t> array3 = {1, 1, 1, 1};
|
||
|
assert(backtracking::subarray_sum::subarray_sum(1, array3) ==
|
||
|
4); // here we are expecting 4 subsets which sum up to 1 i.e.
|
||
|
// {(1),(1),(1),(1)}
|
||
|
std::cout << "passed" << std::endl;
|
||
|
|
||
|
// 4rd test
|
||
|
std::cout << "4th test ";
|
||
|
std::vector<int64_t> array4 = {3, 3, 3, 3};
|
||
|
assert(backtracking::subarray_sum::subarray_sum(6, array4) ==
|
||
|
3); // here we are expecting 3 subsets which sum up to 6 i.e.
|
||
|
// {(3,3),(3,3),(3,3)}
|
||
|
std::cout << "passed" << std::endl;
|
||
|
|
||
|
// 5th test
|
||
|
std::cout << "5th test ";
|
||
|
std::vector<int64_t> array5 = {};
|
||
|
assert(backtracking::subarray_sum::subarray_sum(6, array5) ==
|
||
|
0); // here we are expecting 0 subsets which sum up to 6 i.e. we
|
||
|
// cannot select anything from an empty array
|
||
|
std::cout << "passed" << std::endl;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Main function
|
||
|
* @returns 0 on exit
|
||
|
*/
|
||
|
int main() {
|
||
|
test(); // run self-test implementations
|
||
|
return 0;
|
||
|
}
|