mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
102 lines
3.0 KiB
C++
102 lines
3.0 KiB
C++
|
/**
|
||
|
* @file
|
||
|
* @brief [A babylonian method
|
||
|
* (BM)](https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
|
||
|
* is an algorithm that computes the square root.
|
||
|
* @details
|
||
|
* This algorithm has an application in use case scenario where a user wants
|
||
|
* find accurate square roots of large numbers
|
||
|
* @author [Ameya Chawla](https://github.com/ameyachawlaggsipu)
|
||
|
*/
|
||
|
|
||
|
#include <cassert> /// for assert
|
||
|
#include <iostream> /// for IO operations
|
||
|
|
||
|
#include "math.h"
|
||
|
|
||
|
/**
|
||
|
* @namespace numerical_methods
|
||
|
* @brief Numerical algorithms/methods
|
||
|
*/
|
||
|
|
||
|
namespace numerical_methods {
|
||
|
|
||
|
/**
|
||
|
* @brief Babylonian methods is an iterative function which returns
|
||
|
* square root of radicand
|
||
|
* @param radicand is the radicand
|
||
|
* @returns x1 the square root of radicand
|
||
|
*/
|
||
|
|
||
|
double babylonian_method(double radicand) {
|
||
|
int i = 1; /// To find initial root or rough approximation
|
||
|
|
||
|
while (i * i <= radicand) {
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
i--; /// Real Initial value will be i-1 as loop stops on +1 value
|
||
|
|
||
|
double x0 = i; /// Storing previous value for comparison
|
||
|
double x1 =
|
||
|
(radicand / x0 + x0) / 2; /// Storing calculated value for comparison
|
||
|
double temp = NAN; /// Temp variable to x0 and x1
|
||
|
|
||
|
while (std::max(x0, x1) - std::min(x0, x1) < 0.0001) {
|
||
|
temp = (radicand / x1 + x1) / 2; /// Newly calculated root
|
||
|
x0 = x1;
|
||
|
x1 = temp;
|
||
|
}
|
||
|
|
||
|
return x1; /// Returning final root
|
||
|
}
|
||
|
|
||
|
} // namespace numerical_methods
|
||
|
|
||
|
/**
|
||
|
* @brief Self-test implementations
|
||
|
* @details
|
||
|
* Declaring two test cases and checking for the error
|
||
|
* in predicted and true value is less than 0.0001.
|
||
|
* @returns void
|
||
|
*/
|
||
|
static void test() {
|
||
|
/* descriptions of the following test */
|
||
|
|
||
|
auto testcase1 = 125348; /// Testcase 1
|
||
|
auto testcase2 = 752080; /// Testcase 2
|
||
|
|
||
|
auto real_output1 = 354.045194855; /// Real Output 1
|
||
|
auto real_output2 = 867.225460881; /// Real Output 2
|
||
|
|
||
|
auto test_result1 = numerical_methods::babylonian_method(testcase1);
|
||
|
/// Test result for testcase 1
|
||
|
auto test_result2 = numerical_methods::babylonian_method(testcase2);
|
||
|
/// Test result for testcase 2
|
||
|
|
||
|
assert(std::max(test_result1, real_output1) -
|
||
|
std::min(test_result1, real_output1) <
|
||
|
0.0001);
|
||
|
/// Testing for test Case 1
|
||
|
assert(std::max(test_result2, real_output2) -
|
||
|
std::min(test_result2, real_output2) <
|
||
|
0.0001);
|
||
|
/// Testing for test Case 2
|
||
|
|
||
|
std::cout << "All tests have successfully passed!\n";
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Main function
|
||
|
* @param argc commandline argument count (ignored)
|
||
|
* @param argv commandline array of arguments (ignored)
|
||
|
* calls automated test function to test the working of fast fourier transform.
|
||
|
* @returns 0 on exit
|
||
|
*/
|
||
|
|
||
|
int main(int argc, char const *argv[]) {
|
||
|
test(); // run self-test implementations
|
||
|
// with 2 defined test cases
|
||
|
return 0;
|
||
|
}
|