2020-06-20 00:04:56 +08:00
|
|
|
/**
|
|
|
|
@file
|
|
|
|
@brief Matrix Exponentiation.
|
|
|
|
|
2019-12-06 05:13:16 +08:00
|
|
|
The problem can be solved with DP but constraints are high.
|
2020-06-20 00:04:56 +08:00
|
|
|
<br/>\f$a_i = b_i\f$ (for \f$i <= k\f$)
|
|
|
|
<br/>\f$a_i = c_1 a_{i-1} + c_2 a_{i-2} + ... + c_k a_{i-k}\f$ (for \f$i > k\f$)
|
|
|
|
<br/>Taking the example of Fibonacci series, \f$k=2\f$
|
|
|
|
<br/>\f$b_1 = 1,\; b_2=1\f$
|
|
|
|
<br/>\f$c_1 = 1,\; c_2=1\f$
|
|
|
|
<br/>\f$a = \begin{bmatrix}0& 1& 1& 2& \ldots\end{bmatrix}\f$
|
|
|
|
<br/>This way you can find the \f$10^{18}\f$ fibonacci number%MOD.
|
2019-12-06 05:13:16 +08:00
|
|
|
I have given a general way to use it. The program takes the input of B and C
|
|
|
|
matrix.
|
2020-06-20 00:04:56 +08:00
|
|
|
|
2019-12-06 05:13:16 +08:00
|
|
|
Steps for Matrix Expo
|
|
|
|
1. Create vector F1 : which is the copy of B.
|
|
|
|
2. Create transpose matrix (Learn more about it on the internet)
|
2020-06-20 00:04:56 +08:00
|
|
|
3. Perform \f$T^{n-1}\f$ [transpose matrix to the power n-1]
|
|
|
|
4. Multiply with F to get the last matrix of size (1\f$\times\f$k).
|
|
|
|
|
2019-12-06 05:13:16 +08:00
|
|
|
The first element of this matrix is the required result.
|
|
|
|
*/
|
|
|
|
|
2020-04-18 10:43:43 +08:00
|
|
|
#include <iostream>
|
2020-06-20 00:04:56 +08:00
|
|
|
#include <vector>
|
|
|
|
|
2019-12-06 05:13:16 +08:00
|
|
|
using std::cin;
|
|
|
|
using std::cout;
|
|
|
|
using std::vector;
|
|
|
|
|
2020-06-20 00:04:56 +08:00
|
|
|
/*! shorthand definition for `int64_t` */
|
2019-12-06 05:13:16 +08:00
|
|
|
#define ll int64_t
|
2020-06-20 00:04:56 +08:00
|
|
|
|
|
|
|
/*! shorthand definition for `std::endl` */
|
|
|
|
#define endl std::endl
|
|
|
|
|
|
|
|
/*! shorthand definition for `int64_t` */
|
2019-12-06 05:13:16 +08:00
|
|
|
#define pb push_back
|
|
|
|
#define MOD 1000000007
|
2020-06-20 00:04:56 +08:00
|
|
|
|
|
|
|
/** returns absolute value */
|
|
|
|
inline ll ab(ll x) { return x > 0LL ? x : -x; }
|
|
|
|
|
|
|
|
/** global variable k
|
|
|
|
* @todo @stepfencurryxiao add documetnation
|
|
|
|
*/
|
2019-12-06 05:13:16 +08:00
|
|
|
ll k;
|
2020-06-20 00:04:56 +08:00
|
|
|
|
|
|
|
/** global vector variables
|
|
|
|
* @todo @stepfencurryxiao add documetnation
|
|
|
|
*/
|
2019-12-06 05:13:16 +08:00
|
|
|
vector<ll> a, b, c;
|
|
|
|
|
2020-06-20 00:04:56 +08:00
|
|
|
/** To multiply 2 matrices
|
|
|
|
* \param [in] A matrix 1 of size (m\f$\times\f$n)
|
|
|
|
* \param [in] B \p matrix 2 of size (p\f$\times\f$q)\n\note \f$p=n\f$
|
|
|
|
* \result matrix of dimension (m\f$\times\f$q)
|
|
|
|
*/
|
|
|
|
vector<vector<ll>> multiply(const vector<vector<ll>> &A,
|
|
|
|
const vector<vector<ll>> &B) {
|
2019-12-06 05:13:16 +08:00
|
|
|
vector<vector<ll>> C(k + 1, vector<ll>(k + 1));
|
|
|
|
for (ll i = 1; i <= k; i++) {
|
|
|
|
for (ll j = 1; j <= k; j++) {
|
|
|
|
for (ll z = 1; z <= k; z++) {
|
|
|
|
C[i][j] = (C[i][j] + (A[i][z] * B[z][j]) % MOD) % MOD;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return C;
|
|
|
|
}
|
|
|
|
|
2020-06-20 00:04:56 +08:00
|
|
|
/** computing integer power of a matrix using recursive multiplication.
|
|
|
|
* @note A must be a square matrix for this algorithm.
|
|
|
|
* \param [in] A base matrix
|
|
|
|
* \param [in] p exponent
|
|
|
|
* \return matrix of same dimension as A
|
|
|
|
*/
|
|
|
|
vector<vector<ll>> power(const vector<vector<ll>> &A, ll p) {
|
2019-12-06 05:13:16 +08:00
|
|
|
if (p == 1)
|
|
|
|
return A;
|
|
|
|
if (p % 2 == 1) {
|
|
|
|
return multiply(A, power(A, p - 1));
|
|
|
|
} else {
|
|
|
|
vector<vector<ll>> X = power(A, p / 2);
|
|
|
|
return multiply(X, X);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-06-20 00:04:56 +08:00
|
|
|
/*! Wrapper for Fibonacci
|
|
|
|
* \param[in] n \f$n^\text{th}\f$ Fibonacci number
|
|
|
|
* \return \f$n^\text{th}\f$ Fibonacci number
|
|
|
|
*/
|
2019-12-06 05:13:16 +08:00
|
|
|
ll ans(ll n) {
|
|
|
|
if (n == 0)
|
|
|
|
return 0;
|
|
|
|
if (n <= k)
|
|
|
|
return b[n - 1];
|
|
|
|
// F1
|
|
|
|
vector<ll> F1(k + 1);
|
2020-06-20 00:04:56 +08:00
|
|
|
for (ll i = 1; i <= k; i++) F1[i] = b[i - 1];
|
2019-12-06 05:13:16 +08:00
|
|
|
|
|
|
|
// Transpose matrix
|
|
|
|
vector<vector<ll>> T(k + 1, vector<ll>(k + 1));
|
|
|
|
for (ll i = 1; i <= k; i++) {
|
|
|
|
for (ll j = 1; j <= k; j++) {
|
|
|
|
if (i < k) {
|
|
|
|
if (j == i + 1)
|
|
|
|
T[i][j] = 1;
|
|
|
|
else
|
|
|
|
T[i][j] = 0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
T[i][j] = c[k - j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// T^n-1
|
|
|
|
T = power(T, n - 1);
|
|
|
|
|
|
|
|
// T*F1
|
|
|
|
ll res = 0;
|
|
|
|
for (ll i = 1; i <= k; i++) {
|
|
|
|
res = (res + (T[1][i] * F1[i]) % MOD) % MOD;
|
|
|
|
}
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
2020-06-20 00:04:56 +08:00
|
|
|
/** Main function */
|
2019-12-06 05:13:16 +08:00
|
|
|
int main() {
|
|
|
|
cin.tie(0);
|
|
|
|
cout.tie(0);
|
|
|
|
ll t;
|
|
|
|
cin >> t;
|
|
|
|
ll i, j, x;
|
|
|
|
while (t--) {
|
|
|
|
cin >> k;
|
|
|
|
for (i = 0; i < k; i++) {
|
|
|
|
cin >> x;
|
|
|
|
b.pb(x);
|
|
|
|
}
|
|
|
|
for (i = 0; i < k; i++) {
|
|
|
|
cin >> x;
|
|
|
|
c.pb(x);
|
|
|
|
}
|
|
|
|
cin >> x;
|
|
|
|
cout << ans(x) << endl;
|
|
|
|
b.clear();
|
|
|
|
c.clear();
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|