2020-10-19 02:23:56 +08:00
|
|
|
|
/**
|
|
|
|
|
* @file
|
|
|
|
|
* @brief Implementation of [0-1 Knapsack Problem]
|
|
|
|
|
* (https://en.wikipedia.org/wiki/Knapsack_problem)
|
|
|
|
|
*
|
|
|
|
|
* @details
|
|
|
|
|
* Given weights and values of n items, put these items in a knapsack of
|
|
|
|
|
* capacity `W` to get the maximum total value in the knapsack. In other words,
|
|
|
|
|
* given two integer arrays `val[0..n-1]` and `wt[0..n-1]` which represent
|
|
|
|
|
* values and weights associated with n items respectively. Also given an
|
|
|
|
|
* integer W which represents knapsack capacity, find out the maximum value
|
|
|
|
|
* subset of `val[]` such that sum of the weights of this subset is smaller than
|
|
|
|
|
* or equal to W. You cannot break an item, either pick the complete item or
|
|
|
|
|
* don’t pick it (0-1 property)
|
|
|
|
|
*
|
|
|
|
|
* ### Algorithm
|
|
|
|
|
* The idea is to consider all subsets of items and calculate the total weight
|
|
|
|
|
* and value of all subsets. Consider the only subsets whose total weight is
|
|
|
|
|
* smaller than `W`. From all such subsets, pick the maximum value subset.
|
|
|
|
|
*
|
|
|
|
|
* @author [Anmol](https://github.com/Anmol3299)
|
|
|
|
|
* @author [Pardeep](https://github.com/Pardeep009)
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include <array>
|
|
|
|
|
#include <cassert>
|
2020-06-20 00:04:56 +08:00
|
|
|
|
#include <iostream>
|
2020-10-19 02:23:56 +08:00
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @namespace dynamic_programming
|
|
|
|
|
* @brief Dynamic Programming algorithms
|
|
|
|
|
*/
|
|
|
|
|
namespace dynamic_programming {
|
|
|
|
|
/**
|
|
|
|
|
* @namespace Knapsack
|
|
|
|
|
* @brief Implementation of 0-1 Knapsack problem
|
|
|
|
|
*/
|
|
|
|
|
namespace knapsack {
|
|
|
|
|
/**
|
|
|
|
|
* @brief Picking up all those items whose combined weight is below
|
|
|
|
|
* given capacity and calculating value of those picked items.Trying all
|
|
|
|
|
* possible combinations will yield the maximum knapsack value.
|
|
|
|
|
* @tparam n size of the weight and value array
|
|
|
|
|
* @param capacity capacity of the carrying bag
|
|
|
|
|
* @param weight array representing weight of items
|
|
|
|
|
* @param value array representing value of items
|
|
|
|
|
* @return maximum value obtainable with given capacity.
|
|
|
|
|
*/
|
|
|
|
|
template <size_t n>
|
|
|
|
|
int maxKnapsackValue(const int capacity, const std::array<int, n> &weight,
|
|
|
|
|
const std::array<int, n> &value) {
|
|
|
|
|
std::vector<std::vector<int> > maxValue(n + 1,
|
|
|
|
|
std::vector<int>(capacity + 1, 0));
|
|
|
|
|
// outer loop will select no of items allowed
|
|
|
|
|
// inner loop will select capcity of knapsack bag
|
|
|
|
|
int items = sizeof(weight) / sizeof(weight[0]);
|
|
|
|
|
for (size_t i = 0; i < items + 1; ++i) {
|
|
|
|
|
for (size_t j = 0; j < capacity + 1; ++j) {
|
|
|
|
|
if (i == 0 || j == 0) {
|
|
|
|
|
// if no of items is zero or capacity is zero, then maxValue
|
|
|
|
|
// will be zero
|
|
|
|
|
maxValue[i][j] = 0;
|
|
|
|
|
} else if (weight[i - 1] <= j) {
|
|
|
|
|
// if the ith item's weight(in actual array it will be at i-1)
|
|
|
|
|
// is less than or equal to the allowed weight i.e. j then we
|
|
|
|
|
// can pick that item for our knapsack. maxValue will be the
|
|
|
|
|
// obtained either by picking the current item or by not picking
|
|
|
|
|
// current item
|
|
|
|
|
|
|
|
|
|
// picking current item
|
|
|
|
|
int profit1 = value[i - 1] + maxValue[i - 1][j - weight[i - 1]];
|
2020-06-20 00:04:56 +08:00
|
|
|
|
|
2020-10-19 02:23:56 +08:00
|
|
|
|
// not picking current item
|
|
|
|
|
int profit2 = maxValue[i - 1][j];
|
2020-06-20 00:04:56 +08:00
|
|
|
|
|
2020-10-19 02:23:56 +08:00
|
|
|
|
maxValue[i][j] = std::max(profit1, profit2);
|
|
|
|
|
} else
|
|
|
|
|
// as weight of current item is greater than allowed weight, so
|
|
|
|
|
// maxProfit will be profit obtained by excluding current item.
|
|
|
|
|
maxValue[i][j] = maxValue[i - 1][j];
|
2020-06-20 00:04:56 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
2020-10-19 02:23:56 +08:00
|
|
|
|
|
|
|
|
|
// returning maximum value
|
|
|
|
|
return maxValue[items][capacity];
|
|
|
|
|
}
|
|
|
|
|
} // namespace knapsack
|
|
|
|
|
} // namespace dynamic_programming
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief Function to test above algorithm
|
|
|
|
|
* @returns void
|
|
|
|
|
*/
|
|
|
|
|
static void test() {
|
|
|
|
|
// Test 1
|
|
|
|
|
const int n1 = 3; // number of items
|
|
|
|
|
std::array<int, n1> weight1 = {10, 20, 30}; // weight of each item
|
|
|
|
|
std::array<int, n1> value1 = {60, 100, 120}; // value of each item
|
|
|
|
|
const int capacity1 = 50; // capacity of carrying bag
|
|
|
|
|
const int max_value1 = dynamic_programming::knapsack::maxKnapsackValue(
|
|
|
|
|
capacity1, weight1, value1);
|
|
|
|
|
const int expected_max_value1 = 220;
|
|
|
|
|
assert(max_value1 == expected_max_value1);
|
|
|
|
|
std::cout << "Maximum Knapsack value with " << n1 << " items is "
|
|
|
|
|
<< max_value1 << std::endl;
|
|
|
|
|
|
|
|
|
|
// Test 2
|
|
|
|
|
const int n2 = 4; // number of items
|
|
|
|
|
std::array<int, n2> weight2 = {24, 10, 10, 7}; // weight of each item
|
|
|
|
|
std::array<int, n2> value2 = {24, 18, 18, 10}; // value of each item
|
|
|
|
|
const int capacity2 = 25; // capacity of carrying bag
|
|
|
|
|
const int max_value2 = dynamic_programming::knapsack::maxKnapsackValue(
|
|
|
|
|
capacity2, weight2, value2);
|
|
|
|
|
const int expected_max_value2 = 36;
|
|
|
|
|
assert(max_value2 == expected_max_value2);
|
|
|
|
|
std::cout << "Maximum Knapsack value with " << n2 << " items is "
|
|
|
|
|
<< max_value2 << std::endl;
|
2020-06-20 00:04:56 +08:00
|
|
|
|
}
|
2020-10-19 02:23:56 +08:00
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief Main function
|
|
|
|
|
* @returns 0 on exit
|
|
|
|
|
*/
|
2020-06-20 00:04:56 +08:00
|
|
|
|
int main() {
|
2020-10-19 02:23:56 +08:00
|
|
|
|
// Testing
|
|
|
|
|
test();
|
2020-06-20 00:04:56 +08:00
|
|
|
|
return 0;
|
|
|
|
|
}
|