TheAlgorithms-C-Plus-Plus/dynamic_programming/palindrome_partitioning.cpp

124 lines
4.3 KiB
C++
Raw Normal View History

/**
* @file
* @brief Implements [Palindrome Partitioning](https://leetcode.com/problems/palindrome-partitioning-ii/) algorithm, giving you the minimum number of partitions you need to make
*
* @details
* palindrome partitioning uses dynamic programming and goes to all the possible partitions to find the minimum
* you are given a string and you need to give minimum number of partitions needed to divide it into a number of palindromes
* [Palindrome Partitioning] (https://www.geeksforgeeks.org/palindrome-partitioning-dp-17/)
* overall time complexity O(n^2)
* For example: example 1:-
* String : "nitik"
* Output : 2 => "n | iti | k"
* For example: example 2:-
* String : "ababbbabbababa"
* Output : 3 => "aba | b | bbabb | ababa"
* @author [Sujay Kaushik] (https://github.com/sujaykaushik008)
*/
#include <iostream> // for io operations
#include <vector> // for std::vector
#include <algorithm> // for std::min
#include <cassert> // for std::assert
#include <climits> // for INT_MAX
/**
* @namespace dynamic_programming
* @brief Dynamic Programming algorithms
*/
namespace dynamic_programming {
/**
* @namespace palindrome_partitioning
* @brief Functions for [Palindrome Partitioning](https://leetcode.com/problems/palindrome-partitioning-ii/) algorithm
*/
namespace palindrome_partitioning {
/**
* Function implementing palindrome partitioning algorithm using lookup table method.
* @param str input string
* @returns minimum number of partitions
*/
int pal_part(const std::string &str) {
int n = str.size();
// creating lookup table for minimum number of cuts
std::vector<std::vector<int> > cuts(n, std::vector<int>(n, 0));
// creating lookup table for palindrome checking
std::vector<std::vector<bool> > is_palindrome(n, std::vector<bool>(n, false));
// initialization
for (int i = 0; i < n; i++) {
is_palindrome[i][i] = true;
cuts[i][i] = 0;
}
for (int len = 2; len <= n; len++) {
for (int start_index = 0; start_index < n - len + 1; start_index++) {
int end_index = start_index + len - 1;
if (len == 2) {
is_palindrome[start_index][end_index] = (str[start_index] == str[end_index]);
} else {
is_palindrome[start_index][end_index] =
(str[start_index] == str[end_index]) && is_palindrome[start_index + 1][end_index - 1];
}
if (is_palindrome[start_index][end_index]) {
cuts[start_index][end_index] = 0;
} else {
cuts[start_index][end_index] = INT_MAX;
for (int partition = start_index; partition <= end_index - 1; partition++) {
cuts[start_index][end_index] = std::min(cuts[start_index][end_index],
cuts[start_index][partition] +
cuts[partition + 1][end_index] + 1);
}
}
}
}
return cuts[0][n - 1];
}
} // namespace palindrome_partitioning
} // namespace dynamic_programming
/**
* @brief Test Function
* @return void
*/
static void test() {
// custom input vector
std::vector<std::string> custom_input{"nitik", "ababbbabbababa", "abdc"};
// calculated output vector by pal_part Function
std::vector<int> calculated_output(3);
for (int i = 0; i < 3; i++) {
calculated_output[i] = dynamic_programming::palindrome_partitioning::pal_part(custom_input[i]);
}
// expected output vector
std::vector<int> expected_output{2, 3, 3};
// Testing implementation via assert function
// It will throw error if any of the expected test fails
// Else it will give nothing
for (int i = 0; i < 3; i++) {
assert(expected_output[i] == calculated_output[i]);
}
std::cout << "All tests passed successfully!\n";
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // execute the test
return 0;
}