mirror of
https://hub.njuu.cf/TheAlgorithms/C-Plus-Plus.git
synced 2023-10-11 13:05:55 +08:00
136 lines
3.8 KiB
C++
136 lines
3.8 KiB
C++
|
/**
|
||
|
* @{
|
||
|
* \file
|
||
|
* \brief [Runge Kutta fourth order](https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods) method implementation
|
||
|
*
|
||
|
* \author [Rudra Prasad Das](http://github.com/rudra697)
|
||
|
*
|
||
|
* \details
|
||
|
* It solves the unknown value of y
|
||
|
* for a given value of x
|
||
|
* only first order differential equations
|
||
|
* can be solved
|
||
|
* \example
|
||
|
* it solves \frac{\mathrm{d} y}{\mathrm{d} x}= \frac{\left ( x-y \right )}{2}
|
||
|
* given x for given initial
|
||
|
* conditions
|
||
|
* There can be many such equations
|
||
|
*/
|
||
|
#include <iostream> /// for io operations
|
||
|
#include <vector> /// for using the vector container
|
||
|
#include <cassert> /// asserting the test functions
|
||
|
|
||
|
/**
|
||
|
* @brief The change() function is used
|
||
|
* to return the updated iterative value corresponding
|
||
|
* to the given function
|
||
|
* @param x is the value corresponding to the x coordinate
|
||
|
* @param y is the value corresponding to the y coordinate
|
||
|
* @returns the computed function value at that call
|
||
|
*/
|
||
|
static double change(double x, double y)
|
||
|
{
|
||
|
return ((x - y)/2.0);
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @namespace numerical_methods
|
||
|
* @brief Numerical Methods
|
||
|
*/
|
||
|
namespace numerical_methods {
|
||
|
/**
|
||
|
* @namespace runge_kutta
|
||
|
* @brief Functions for [Runge Kutta fourth order](https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods) method
|
||
|
*/
|
||
|
namespace runge_kutta {
|
||
|
/**
|
||
|
* @brief the Runge Kutta method finds the value of integration of a function in the given limits.
|
||
|
* the lower limit of integration as the initial value and the upper limit is the given x
|
||
|
* @param init_x is the value of initial x and is updated after each call
|
||
|
* @param init_y is the value of initial x and is updated after each call
|
||
|
* @param x is current iteration at which the function needs to be evaluated
|
||
|
* @param h is the step value
|
||
|
* @returns the value of y at thr required value of x from the initial conditions
|
||
|
*/
|
||
|
double rungeKutta(double init_x, const double &init_y, const double &x, const double &h)
|
||
|
{
|
||
|
|
||
|
// Count number of iterations
|
||
|
// using step size or
|
||
|
// step height h
|
||
|
|
||
|
|
||
|
// n calucates the number of iterations
|
||
|
// k1, k2, k3, k4 are the Runge Kutta variables
|
||
|
// used for calculation of y at each iteration
|
||
|
|
||
|
auto n = static_cast<uint64_t>((x - init_x) / h);
|
||
|
// used a vector container for the variables
|
||
|
std::vector<double> k(4,0.0);
|
||
|
|
||
|
|
||
|
// Iterate for number of iterations
|
||
|
|
||
|
double y = init_y;
|
||
|
for (int i=1; i<=n; ++i)
|
||
|
{
|
||
|
|
||
|
// Apply Runge Kutta Formulas
|
||
|
// to find next value of y
|
||
|
k[0] = h*change(init_x, y);
|
||
|
k[1] = h*change(init_x + 0.5*h, y + 0.5*k[0]);
|
||
|
k[2] = h*change(init_x + 0.5*h, y + 0.5*k[1]);
|
||
|
k[3] = h*change(init_x + h, y + k[2]);
|
||
|
|
||
|
|
||
|
// Update next value of y
|
||
|
|
||
|
y += (1.0/6.0)*(k[0] + 2*k[1] + 2*k[2] + k[3]);
|
||
|
|
||
|
// Update next value of x
|
||
|
|
||
|
init_x += h;
|
||
|
}
|
||
|
|
||
|
return y;
|
||
|
}
|
||
|
} // namespace runge_kutta
|
||
|
} // namespace numerical_methods
|
||
|
|
||
|
/**
|
||
|
* @brief Tests to check algorithm implementation.
|
||
|
* @returns void
|
||
|
*/
|
||
|
static void test()
|
||
|
{
|
||
|
std::cout << "The Runge Kutta function will be tested on the basis of precomputed values\n";
|
||
|
|
||
|
std::cout << "Test 1...." << "\n";
|
||
|
double valfirst=numerical_methods::runge_kutta::rungeKutta(2,3,4,0.2); // Tests the function with pre calculated values
|
||
|
assert(valfirst==3.10363932323749570);
|
||
|
std::cout << "Passed Test 1\n";
|
||
|
|
||
|
std::cout << "Test 2...." << "\n";
|
||
|
double valsec=numerical_methods::runge_kutta::rungeKutta(1,2,5,0.1); // The value of step changed
|
||
|
assert(valsec==3.40600589380261409);
|
||
|
std::cout << "Passed Test 2\n";
|
||
|
|
||
|
std::cout << "Test 3...." << "\n";
|
||
|
double valthird=numerical_methods::runge_kutta::rungeKutta(-1,3,4,0.1); // Tested with negative value
|
||
|
assert(valthird==2.49251005860244268);
|
||
|
std::cout << "Passed Test 3\n";
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Main function
|
||
|
* @returns 0 on exit
|
||
|
*/
|
||
|
int main()
|
||
|
{
|
||
|
|
||
|
test(); // Execute the tests
|
||
|
return 0;
|
||
|
}
|